ALMUAALEMI B, CHEN H B, KHOUTIR S. Existence of Nontrivial Solutions for Schrödinger-Poisson Systems with Critical Exponent on Bounded Domains[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(4): 1675-1686. doi: 10.1007/s40840-017-0570-0
|
KHOUTIR S. Infinitely many High Energy Radial Solutions for a Class of Nonlinear Schrödinger-Poisson Systems in R 3[J]. Applied Mathematics Letters, 2019, 90: 139-145. doi: 10.1016/j.aml.2018.10.024
|
MURCIA E G, SICILIANO G. Least Energy Radial Sign-Changing Solution for the Schrödinger-Poisson System in R 3 under an Asymptotically Cubic Nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2019, 474(1): 544-571. doi: 10.1016/j.jmaa.2019.01.063
|
SUN J J, MA S W. Ground State Solutions for some Schrödinger-Poisson Systems with Periodic Potentials[J]. Journal of Differential Equations, 2016, 260(3): 2119-2149. doi: 10.1016/j.jde.2015.09.057
|
BREZIS H, NIRENBERG L. Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[J]. Communications on Pure and Applied Mathematics, 1983, 36(4): 437-477. doi: 10.1002/cpa.3160360405
|
AMBROSETTI A, RABINOWITZ P H. Dual Variational Methods in Critical Point Theory and Applications[J]. Journal of Functional Analysis, 1973, 14(4): 349-381. doi: 10.1016/0022-1236(73)90051-7
|
杜瑶, 唐春雷.一类临界Schrödinger方程的正基态径向解[J].西南师范大学学报(自然科学版), 2019, 44(6): 22-26.
|
李贵东, 唐春雷.带有临界指数的Schrödinger方程正基态解的存在性[J].西南大学学报(自然科学版), 2018, 40(6): 92-96.
|
张琦.带有位势的Schrödinger-Poisson系统解的存在性与多解性[J].数学物理学报, 2016, 36(1): 49-64.
|
张维, 唐春雷.一类次线性分数阶Schrödinger方程的无穷多解[J].西南大学学报(自然科学版), 2018, 40(6): 78-83.
|
GAO F S, DA SILVA E D, YANG M B, et al. Existence of Solutions for Critical Choquard Equations via the Concentration-Compactness Method[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2020, 150(2): 921-954. doi: 10.1017/prm.2018.131
|
DOÓJ M, RUF B, UBILLA P. On Supercritical Sobolev Type Inequalities and Related Elliptic Equations[J]. Calculus of Variations and Partial Differential Equations, 2016, 55(4): 83. doi: 10.1007/s00526-016-1015-6
|