KUZNETSOV V A, MAKALKIN I A, TAYLOR M A. Nonlinear Dynamics of Immunogenic Tumors: Parameter Estimation and Global Bifurcation Analysis [J]. Bulletin of Mathematical Biology, 1994, 56(2): 295-321. doi: 10.1016/S0092-8240(05)80260-5
|
SARKAR R R, BANERJEE S. Cancer Self Remission and Tumor Stability-A Stochastic Approach [J]. Mathematical Biosciences, 2005, 196(1): 65-81. doi: 10.1016/j.mbs.2005.04.001
|
BANERJEE S, SARKAR R R. Delay-Induced Model for Tumor-Immune Interaction and Control of Malignant Tumor Growth [J]. Biosystems, 2008, 91(1): 268-288. doi: 10.1016/j.biosystems.2007.10.002
|
KHAJANCHI S, NIETO J J. Mathematical Modeling of Tumor-Immune Competitive System, Considering the Role of Time Delay [J]. Applied Mathematics and Computation, 2019, 340: 180-205. doi: 10.1016/j.amc.2018.08.018
|
PIOTROWSKA M J, BODNAR M. Influence of Distributed Delays on the Dynamics of a Generalized Immune System Cancerous Cells Interactions Model [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 54: 389-415. doi: 10.1016/j.cnsns.2017.06.003
|
DE PILLIS L G, GU W, RADUNSKAYA A E. Mixed Immunotherapy and Chemotherapy of Tumors: Modeling, Applications and Biological Interpretations [J]. Journal of Theoretical Biology, 2006, 238(4): 841-862. doi: 10.1016/j.jtbi.2005.06.037
|
HERRERA F G, IRVING M, KANDALAFT L E, et al. Rational Combinations of Immunotherapy with Radiotherapy in Ovarian Cancer [J]. The Lancet Oncology, 2019, 20(8): e417-e433.
|
LIU P, LIU X J. Dynamics of a Tumor-Immune Model Considering Targeted Chemotherapy[J]. Chaos, Solitons and Fractals: the Interdisciplinary Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2017, 98: 7-13.
|
HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and Applications of Hopf Bifurcation[M]. London: Cambridge University Press, 1981: 713-714.
|