SEIDMAN T I, ELDEN L. An 'Optimal Filtering' Method for the Sideways Heat Equation[J]. Inverse Problems, 1990, 6(4): 681-696. doi: 10.1088/0266-5611/6/4/013
XIONG X T, FU C L, LI H F. Fourier Regularization Method of a Sideways Heat Equation for Determining Surface Heat Flux[J]. Journal of Mathematical Analysis and Applications, 2006, 317(1): 331-348. doi: 10.1016/j.jmaa.2005.12.010
DORROH J R, RU X P. The Application of the Method of Quasi-Reversibility to the Sideways Heat Equation[J]. Journal of Mathematical Analysis and Applications, 1999, 236(2): 503-519. doi: 10.1006/jmaa.1999.6462
TAUTENHAHN U. Optimality for Ill-Posed Problems under General Source Conditions[J]. Numerical Functional Analysis and Optimization, 1998, 19(3-4): 377-398. doi: 10.1080/01630569808816834
CHEN W, YE L J, SUN H G. Fractional Diffusion Equations by the Kansa Method[J]. Computers & Mathematics WithApplications, 2010, 59(5): 1614-1620.
GORENFLO R, MAINARDI F, MORETTI D, et al. Discrete Random Walk Models for Space-Time Fractional Diffusion[J]. Chemical Physics, 2002, 284(1-2): 521-541. doi: 10.1016/S0301-0104(02)00714-0
ZASLAVSKY G M. Chaos, Fractional Kinetics, and Anomalous Transport[J]. Physics Reports, 2002, 371(6): 461-580. doi: 10.1016/S0370-1573(02)00331-9
SCALAS E, GORENFLO R, MAINARDI F. Fractional Calculus and Continuous-Time Finance[J]. Physica A: Statistical Mechanics and Its Applications, 2000, 284(1-4): 376-384. doi: 10.1016/S0378-4371(00)00255-7
赵梅妹. 改进的分数阶辅助方程方法及其在非线性空间-时间分数阶微分方程中的应用[J]. 西南师范大学学报(自然科学版), 2018, 43(11): 24-29.
LIU F, ANH V, TURNER I. Numerical Solution of the Space Fractional Fokker-Planck Equation[J]. Journal of Computational and Applied Mathematics, 2004, 166(1): 209-219. doi: 10.1016/j.cam.2003.09.028
OZALPN, MIZRAK O O. Fractional Laplace Transform Method in the Framework of the CTIT Transformation[J]. Journal of Computational and Applied Mathematics, 2017, 317: 90-99. doi: 10.1016/j.cam.2016.11.039
VILELA MENDES R. A Fractional Calculus Interpretation of the Fractional Volatility Model[J]. Nonlinear Dynamics, 2008, 55(4): 395-399.
LI M, XIONG X T. On a Fractional Backward Heat Conduction Problem: Application to Deblurring[J]. Computers & Mathematics With Applications, 2012, 64(8): 2594-2602.
QIAN Z, FENG X L. A Fractional Tikhonov Method for Solving a Cauchy Problem of Helmholtz Equation[J]. Applicable Analysis, 2017, 96(10): 1656-1668. doi: 10.1080/00036811.2016.1254776
薛雪敏, 熊向团, 庄娥, 等. 时间分数阶反扩散问题的一种新的分数次Tikhonov方法[J]. 高校应用数学学报A辑, 2018, 33(4): 441-452.
PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
ELDÉN L, BERNTSSON F, REGINSKA T. Wavelet and Fourier Methods for Solving the Sideways Heat Equation[J]. SIAM Journal on Scientific Computing, 2000, 21(6): 2187-2205. doi: 10.1137/S1064827597331394
FENG X L, FU C L, CHENG H. A Regularization Method for Solving the Cauchy Problem for the Helmholtz Equation[J]. Applied Mathematical Modelling, 2011, 35(7): 3301-3315. doi: 10.1016/j.apm.2011.01.021
XIONG X T. A Regularization Method for a Cauchy Problem of the Helmholtz Equation[J]. Journal of Computational and Applied Mathematics, 2010, 233(8): 1723-1732. doi: 10.1016/j.cam.2009.09.001
XIONG X T, XUE X M. Fractional Tikhonov Method for an Inverse Time-Fractional Diffusion Problem in 2-Dimensional Space[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43(1): 25-38. doi: 10.1007/s40840-018-0662-5
熊向团. 抛物型偏微分方程中几类反问题的正则化理论及算法[D]. 兰州: 兰州大学, 2007.
QIAN Z, FU C L. Regularization Strategies for a Two-Dimensional Inverse Heat Conduction Problem[J]. Inverse Problems, 2007, 23(3): 1053-1068. doi: 10.1088/0266-5611/23/3/013