| LI H Y, PU Y, LIAO J F. Some Results for a Class of Kirchhoff Type Problem with Hardy-Sobolev Critical Exponent[J]. Mediterr J Math, 2019, 16(3): 1-16. doi: 10.1007/s00009-019-1349-3 |
| D'ANCONA P, SPAGNOLO S. Global Solvability for the Degenerate Kirchhoff Equation with Real Analytic Data[J]. Inventiones Mathematicae, 1992, 108(1): 247-262. doi: 10.1007/BF02100605 |
| HUANG Y S, LIU Z, WU Y Z. On Kirchhoff Type Equations with Critical Sobolev Exponent[J]. J Math Anal Appl, 2018, 462(1): 483-503. doi: 10.1016/j.jmaa.2018.02.023 |
| 刘选状, 吴行平, 唐春雷. 一类带有临界指数增长项的Kirchhoff型方程正的基态解的存在性[J]. 西南大学学报(自然科学版), 2015, 37(6): 54-59. |
| 曾兰, 唐春雷. 带有临界指数的Kirchhoff型方程正解的存在性[J]. 西南师范大学学报(自然科学版), 2016, 41(4): 29-34. |
| 唐榆婷, 唐春雷. 一类带Hardy-Sobolev临界指数的Kirchhoff方程正解的存在性[J]. 西南大学学报(自然科学版), 2017, 39(6): 81-86. |
| CAO D M, PENG S J. A Note on the Sign-Changing Solutions to Elliptic Problems with Critical Sobolev and Hardy Terms[J]. J Differential Equations, 2003, 193(2): 424-434. doi: 10.1016/S0022-0396(03)00118-9 |
| TANG X H, CHENG B T. Ground State Sign-Changing Solutions for Kirchhoff Type Problems in Bounded Domains[J]. J Differential Equations, 2016, 216(4): 2384-2402. |
| BOUCHEKIF M, MATALLAH A. Multiple Positive Solutions for Elliptic Equations Involving a Concave Term and Critical Sobolev-Hardy Exponent[J]. Appl Math Lett, 2009, 22(2): 268-275. doi: 10.1016/j.aml.2008.03.024 |
| CAO D M, HAN P G. Solutions for Semilinear Elliptic Equations with Critical Exponents and Hardy Potential[J]. J Differential Equations, 2004, 205(2): 521-537. doi: 10.1016/j.jde.2004.03.005 |
| KANG D S, DENG Y B. Multiple Solutions for Inhomogeneous Elliptic Problems Involving Critical Sobolev-Hardy Exponents[J]. Nonlinear Anal, 2005, 60(4): 729-753. doi: 10.1016/j.na.2004.09.048 |
| GHOUSSOUB N, YUAN C. Multiple Solutions for Quasi-Linear PDEs Involving the Critical Sobolev and Hardy Exponents[J]. Trans Am Math Soc, 2000, 352(12): 5703-5743. doi: 10.1090/S0002-9947-00-02560-5 |
| 钟承奎, 范先令, 陈文塬. 非线性泛函分析引论[M]. 兰州: 兰州大学出版社, 1998. |
| BRÉZIS H, NIRENBERG L. H1 Versus C1 Local Minimizers[J]. Acad Sci Paris Sér I Math, 2009, 317: 465-472. |