留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一类具有Hardy-Sobolev临界指数的Kirchhoff方程的多解性

上一篇

下一篇

苑紫冰, 欧增奇. 一类具有Hardy-Sobolev临界指数的Kirchhoff方程的多解性[J]. 西南师范大学学报(自然科学版), 2021, 46(8): 32-36. doi: 10.13718/j.cnki.xsxb.2021.08.006
引用本文: 苑紫冰, 欧增奇. 一类具有Hardy-Sobolev临界指数的Kirchhoff方程的多解性[J]. 西南师范大学学报(自然科学版), 2021, 46(8): 32-36. doi: 10.13718/j.cnki.xsxb.2021.08.006
YUAN Zi-bing, OU Zeng-qi. Multiple Solutions for a Class of Kirchhoff-Type Equations with Hardy-Sobolev Critical Exponent[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(8): 32-36. doi: 10.13718/j.cnki.xsxb.2021.08.006
Citation: YUAN Zi-bing, OU Zeng-qi. Multiple Solutions for a Class of Kirchhoff-Type Equations with Hardy-Sobolev Critical Exponent[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(8): 32-36. doi: 10.13718/j.cnki.xsxb.2021.08.006

一类具有Hardy-Sobolev临界指数的Kirchhoff方程的多解性

  • 基金项目: 国家自然科学基金项目(11801465,11971393)
详细信息
    作者简介:

    苑紫冰,硕士研究生. 主要从事非线性泛函分析的研究 .

    通讯作者: 欧增奇,副教授
  • 中图分类号: O176.3

Multiple Solutions for a Class of Kirchhoff-Type Equations with Hardy-Sobolev Critical Exponent

  • 摘要: 考虑一类Kirchhoff方程 $ \left\{\begin{array}{ll} -\left(a+b \int_{\varOmega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=\frac{u^{3}}{|x|}+\lambda u^{q} & x \in \varOmega \\ u=0 & x \in \partial \varOmega \end{array}\right. $ 其中 \lt inline-formula \gt $ \varOmega \subset \mathbb{R}^{3} $ \lt /inline-formula \gt 是具有光滑边界的有界区域,且 \lt inline-formula \gt $ 0 \in \varOmega, a, b, \lambda \gt 0,1 \lt q \lt 3$ \lt /inline-formula \gt . 当 \lt inline-formula \gt $ b \gt \frac{1}{A_{1}^{2}} $ \lt /inline-formula \gt 时(其中 \lt i \gt A \lt /i \gt \lt sub \gt 1 \lt /sub \gt \gt 0是最佳Hardy-Sobolev常数),应用山路定理得到了这类带有Hardy-Sobolev临界指数的Kirchhoff方程两个正解的存在性.
  • 加载中
  • [1] LI H Y, PU Y, LIAO J F. Some Results for a Class of Kirchhoff Type Problem with Hardy-Sobolev Critical Exponent[J]. Mediterr J Math, 2019, 16(3): 1-16. doi: 10.1007/s00009-019-1349-3
    [2] D'ANCONA P, SPAGNOLO S. Global Solvability for the Degenerate Kirchhoff Equation with Real Analytic Data[J]. Inventiones Mathematicae, 1992, 108(1): 247-262. doi: 10.1007/BF02100605
    [3] HUANG Y S, LIU Z, WU Y Z. On Kirchhoff Type Equations with Critical Sobolev Exponent[J]. J Math Anal Appl, 2018, 462(1): 483-503. doi: 10.1016/j.jmaa.2018.02.023
    [4] 刘选状, 吴行平, 唐春雷. 一类带有临界指数增长项的Kirchhoff型方程正的基态解的存在性[J]. 西南大学学报(自然科学版), 2015, 37(6): 54-59.
    [5] 曾兰, 唐春雷. 带有临界指数的Kirchhoff型方程正解的存在性[J]. 西南师范大学学报(自然科学版), 2016, 41(4): 29-34. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2016.04.007
    [6] 唐榆婷, 唐春雷. 一类带Hardy-Sobolev临界指数的Kirchhoff方程正解的存在性[J]. 西南大学学报(自然科学版), 2017, 39(6): 81-86.
    [7] CAO D M, PENG S J. A Note on the Sign-Changing Solutions to Elliptic Problems with Critical Sobolev and Hardy Terms[J]. J Differential Equations, 2003, 193(2): 424-434. doi: 10.1016/S0022-0396(03)00118-9
    [8] doi: http://www.sciencedirect.com/science/article/pii/S0022039616300663 TANG X H, CHENG B T. Ground State Sign-Changing Solutions for Kirchhoff Type Problems in Bounded Domains[J]. J Differential Equations, 2016, 216(4): 2384-2402.
    [9] BOUCHEKIF M, MATALLAH A. Multiple Positive Solutions for Elliptic Equations Involving a Concave Term and Critical Sobolev-Hardy Exponent[J]. Appl Math Lett, 2009, 22(2): 268-275. doi: 10.1016/j.aml.2008.03.024
    [10] CAO D M, HAN P G. Solutions for Semilinear Elliptic Equations with Critical Exponents and Hardy Potential[J]. J Differential Equations, 2004, 205(2): 521-537. doi: 10.1016/j.jde.2004.03.005
    [11] KANG D S, DENG Y B. Multiple Solutions for Inhomogeneous Elliptic Problems Involving Critical Sobolev-Hardy Exponents[J]. Nonlinear Anal, 2005, 60(4): 729-753. doi: 10.1016/j.na.2004.09.048
    [12] GHOUSSOUB N, YUAN C. Multiple Solutions for Quasi-Linear PDEs Involving the Critical Sobolev and Hardy Exponents[J]. Trans Am Math Soc, 2000, 352(12): 5703-5743. doi: 10.1090/S0002-9947-00-02560-5
    [13] 钟承奎, 范先令, 陈文塬. 非线性泛函分析引论[M]. 兰州: 兰州大学出版社, 1998.
    [14] doi: http://cat.inist.fr/?aModele=afficheN&cpsidt=4080381 BRÉZIS H, NIRENBERG L. H1 Versus C1 Local Minimizers[J]. Acad Sci Paris Sér I Math, 2009, 317: 465-472.
  • 加载中
计量
  • 文章访问数:  1983
  • HTML全文浏览数:  1983
  • PDF下载数:  229
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-30
  • 刊出日期:  2021-08-20

一类具有Hardy-Sobolev临界指数的Kirchhoff方程的多解性

    通讯作者: 欧增奇,副教授
    作者简介: 苑紫冰,硕士研究生. 主要从事非线性泛函分析的研究
  • 西南大学 数学与统计学院,重庆 400715
基金项目:  国家自然科学基金项目(11801465,11971393)

摘要: 考虑一类Kirchhoff方程 $ \left\{\begin{array}{ll} -\left(a+b \int_{\varOmega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=\frac{u^{3}}{|x|}+\lambda u^{q} & x \in \varOmega \\ u=0 & x \in \partial \varOmega \end{array}\right. $ 其中 \lt inline-formula \gt $ \varOmega \subset \mathbb{R}^{3} $ \lt /inline-formula \gt 是具有光滑边界的有界区域,且 \lt inline-formula \gt $ 0 \in \varOmega, a, b, \lambda \gt 0,1 \lt q \lt 3$ \lt /inline-formula \gt . 当 \lt inline-formula \gt $ b \gt \frac{1}{A_{1}^{2}} $ \lt /inline-formula \gt 时(其中 \lt i \gt A \lt /i \gt \lt sub \gt 1 \lt /sub \gt \gt 0是最佳Hardy-Sobolev常数),应用山路定理得到了这类带有Hardy-Sobolev临界指数的Kirchhoff方程两个正解的存在性.

English Abstract

  • 本文考虑如下一类具有Hardy-Sobolev项的Kirchhoff方程的多解性问题:

    这里的$\varOmega \subset \mathbb{R}^{3}$是具有光滑边界的有界区域,$0 \in \varOmega, a, b \geqslant 0$$a+b>0, \lambda>0, 1 <q <3$,并且4是Hardy-Sobolev临界指数. 关于Kirchhoff方程解的存在性和多重性已有很多的结果[1-8]. 特别地,文献[1]考虑了方程(1)在$0 <q<1, a, b, \lambda>0$时的情形. 当$b <\frac{1}{A_{1}^{2}}$时,通过变分法,可以得到方程(1)有两个正解; 当$b>\frac{1}{A_{1}^{2}}$时,通过临界点定理,可以得到方程(1)无穷多对不同的解. 当$a=1, b=0$时,方程(1)变成了具有Hardy-Sobolev项的半线性椭圆方程,许多论文已经研究过这类方程[2, 9-11]. 文献[4]研究了下面的方程:

    其中0 < q < 1,通过变分法得到了方程(2)的两个正解. 根据上述文献的启发,我们将考虑方程(1)解的多重性.

    方程(1)的能量泛函I

    这里的$H_{0}^{1}(\varOmega)$是Sobolev空间,它的范数为$\|u\|=\left(\int_{\varOmega}|\nabla u|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \cdot L^{p}(\varOmega)(1 \leqslant p <+\infty)$是Lebesgue空间,它的范数为$|u|_{p}=\left(\int_{\varOmega}|u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}$. 我们用$H^{-1}(\varOmega)$来表示$H_{0}^{1}(\varOmega)$的对偶空间,用$S_{q}$表示$H_{0}^{1}(\varOmega)$嵌入到$L^{q}(\varOmega)\left(1 <q <2^{*}\right)$的最佳Sobolev常数. 对任意的$u \in H_{0}^{1}(\varOmega)$,有

    u是方程(1)的解当且仅当u是泛函I的临界点,即对任意的$v \in H_{0}^{1}(\varOmega)$,有

    $A_{s}(0 \leqslant s <2)$是最佳Sobolev-Hardy常数,即

    特别地,当s=0时,

    是最佳Sobolev常数.

    定理1 对于$1 <q <3, b>\frac{1}{A_{1}^{2}}$,存在$\lambda^{*}>0$,使得当$\lambda>\lambda^{*}$时,方程(1)至少有两个正解.

    注1 文献[1]考虑的是$0 <q <1$的情况,而本文考虑的是$1 <q <3$的情况,是对文献[1]的一个推广.

    引理1 设$a, b>0, 1 <q <3, b>\frac{1}{A_{1}^{2}}$,则I的有界(PS)序列都有一个强收敛子列.

     设$\left\{u_{n}\right\}$I$H_{0}^{1}(\varOmega)$中的有界(PS)序列,即

    取一个子列,仍记为$\left\{u_{n}\right\}$,则存在$u \in H_{0}^{1}(\varOmega)$,使得

    $v_{n}=u_{n}-u$,下面需要证明:当$n \rightarrow \infty$时,$\left\|v_{n}\right\| \rightarrow 0$. 定义$\lim \limits_{n \rightarrow \infty}\left\|v_{n}\right\|=l$. 由(6)式可以得到

    由文献[12],有

    由(5)式和(7)式,可以得到

    因此,由(8)-(10)式可得

    再根据(5)式得

    由(11)式和(12)式可得

    再由(4)式,可以得到

    结合(13)式,当$n \rightarrow \infty$时可得

    又因为$b>\frac{1}{A_{1}^{2}}$,从而l=0,即当$n \rightarrow \infty$时,在$H_{0}^{1}(\varOmega)$$u_{n} \rightarrow u$.

    引理2[13]   设在$H_{0}^{1}(\varOmega)$中,$I \in C^{1}\left(H_{0}^{1}(\varOmega)\right., \mathbb{R})$有下界且满足(PS)条件,则I能达到全局极小值,即存在$u_{*} \in H_{0}^{1}(\varOmega)$,使得$I\left(u_{*}\right)=\inf \limits_{u \in H_{0}^{1}(\varOmega)} I(u)$.

    定理1的证明 首先对方程(1)的第一个解进行证明. 对任意$u \in H_{0}^{1}(\varOmega)$,由Hölder不等式和(4)式可以得到

    于是

    因为$b>\frac{1}{A_{1}^{2}}$$1 <q <3$,所以I$H_{0}^{1}(\varOmega)$中强制且有下界. 在$H_{0}^{1}(\varOmega)$中取一点u0≠0,使得存在

    $\lambda>\lambda^{*}$时,有

    由引理1、引理2,以及I$H_{0}^{1}(\varOmega)$中是有下界的,则I存在一个临界点$u_{1} \in H_{0}^{1}(\varOmega)$,使得

    从而u1是方程(1)的一个非平凡解. 又因为$I\left(\left|u_{1}\right|\right)=I\left(u_{1}\right)$,不失一般性,我们可以假设$u_{1} \geqslant 0 .$由强极大值原理[14],可以得到在Ωu1>0. 因此,u1是方程(1)的一个正解,并且I(u1) < 0.

    下面对第二个正解进行证明. 由(14)式,可得存在ρδ>0且$\rho <\left\|u_{1}\right\|$,使得对任意的$u \in H_{0}^{1}(\varOmega)$,当‖u‖=ρ时,$I(u) \geqslant \delta>0$. 由山路定理可知,存在$\left\{u_{n}\right\}$ $H_{0}^{1}(\varOmega)$,使得

    其中

    又因

    由(14)式可知$\left\{u_{n}\right\}$$H_{0}^{1}(\varOmega)$中有界,再结合引理1可知,存在一个收敛的子序列,记为$\left\{u_{n}^{\prime}\right\}$,和$u_{2} \in$ $H_{0}^{1}(\varOmega)$,使得当$n \rightarrow \infty$时,在$H_{0}^{1}(\varOmega)$$u_{n}^{\prime} \rightarrow u_{2}$. 因此$\lim\limits_{n \rightarrow \infty} I\left(u_{n}^{\prime}\right)=I\left(u_{2}\right)=c>0$$I^{\prime}\left(u_{2}\right)=0$. 因此,u2是方程(1)的一个非零解,与u1是正解的证明方法相同,可得u2是方程(1)的另一个正解.

参考文献 (14)

目录

/

返回文章
返回