DUFFIN R, SCHAEFFER A. A Class of Nonharmonic Fourier Series [J]. Transactions of the American Mathematical Society, 1952, 72(2): 341-366. doi: 10.1090/S0002-9947-1952-0047179-6
FUGLEDE B. Commuting Self-Adjoint Partial Differential Operators and a Group Theoretic Problem [J]. Journal of Functional Analysis, 1974, 16(1): 101-121. doi: 10.1016/0022-1236(74)90072-X
TAO T. Fuglede's Conjecture is False in 5 and Higher Dimensions[J]. Mathematical Research Letters, 2004, 11(2): 251-258. doi: 10.4310/MRL.2004.v11.n2.a8
IOSEVICH A, KATZ N, TAO T. The Fuglede Spectral Conjecture Holds for Convex Planar Domains[J]. Mathematical Research Letters, 2003, 10(5): 559-569. doi: 10.4310/MRL.2003.v10.n5.a1
KOLOUNTZAKIS M N. Non-Symmetric Convex Domains Have No Basis of Exponentials[J]. Illinois Journal of Mathematics, 2000, 44(3): 542-550.
KOLOUNTZAKIS M N, MATOLCSI M. Tiles with No Spectra [J]. Forum Mathematicum, 2006, 18(3): 519-528.
MATOLCSI M. Fuglede's Conjecture Fails in Dimension 4 [J]. Proceedings of the American Mathematical Society, 2005, 133(10): 3021-3026. doi: 10.1090/S0002-9939-05-07874-3
AYACHI B, BAU E, FITZ PATRICK D, et al. Tiling Sets and Spectral Sets Over Finite Fields[J]. Journal of Functional Analysis, 2017, 273(8): 2547-2577. doi: 10.1016/j.jfa.2016.10.018
买买提艾力·喀迪尔. 局部紧的Abel群上的Paley-Wiener空间和规范正交基[J]. 安徽大学学报(自然科学版), 2021, 45(2): 23-27.
IOSEVICH A, MAYELI A. Exponential Bases, Paley-Wiener Spaces and Applications[J]. Journal of Functional Analysis, 2015, 268(2): 363-375. doi: 10.1016/j.jfa.2014.10.006
BOOR C, DEVORE R A, RON A. Approximation from Shift Invariant Subspaces of L2($ {\mathbb{R}}^d$)[J]. Transactions of the Americal Mathematical Society Amer Math Soc, 1993, 341(2): 787-806.
BOWNIK M. The Structure of Shift-Invariant Subspace of L2($ {\mathbb{R}}^d$)[J]. Journal of Functional Analysis, 2000, 177(2): 282-309. doi: 10.1006/jfan.2000.3635
RUDIN W. Fourier Analysis on Groups[M]. New York: John Wiley and Sons, 1962.
GROCHENIG K. Foundations of Time-Frequency Analysis[M]. Boston: Birkhäuser, 2001.