KELLER E F, SEGEL L A. Initiation of Slime Mold Aggregation Viewed as an Instability[J]. Journal of Theoretical Biology, 1970, 26(3): 399-415. doi: 10.1016/0022-5193(70)90092-5
|
王玉兰. 趋化-流体耦合模型研究进展[J]. 西华大学学报(自然科学版), 2016, 35(4): 30-34, 38. doi: 10.3969/j.issn.1673-159X.2016.04.006
|
BELLOMO N, BELLOUQUID A, TAO Y, et al. Toward a Mathematical Theory of Keller-Segel Models of Pattern Formation in Biological Tissues[J]. Mathematical Models and Methods in Applied Sciences, 2015, 25(9): 1663-1763. doi: 10.1142/S021820251550044X
|
OSAKI K, YAGI A. Finite Dimensional Attractor for One-Dimensional Keller-Segel Equations[J]. Funkcialaj Ekvacioj, 2001, 44: 441-469.
|
NAGAI T, SENBA T, YOSHIDA K. Application of the Trudinger-Moser Inequality to a Parabolic System of Chemotaxis[J]. Funkcialaj Ekvacioj, 1997, 40: 411-433.
|
WINKLER M. Finite-Time Blow-up in the Higher-Dimensional Parabolic-Parabolic Keller-Segel System[J]. Journal De Mathématiques Pures et Appliquées, 2013, 100(5): 748-767. doi: 10.1016/j.matpur.2013.01.020
|
ZHENG J S. An Optimal Result for Global Classical and Bounded Solutions in a Two-Dimensional Keller-Segel-Navier-Stokes System with Sensitivity[EB/OL]. (2019-05-06)[2021-01-18]. https://arxiv.org/abs/1903.01033.
|
LORZ A. A Coupled Keller-Segel-Stokes Model: Global Existence for Small Initial Data and Blow-up Delay[J]. Communications in Mathematical Sciences, 2012, 10(2): 555-574. doi: 10.4310/CMS.2012.v10.n2.a7
|
LIU J, WANG Y F. Global Weak Solutions in a Three-Dimensional Keller-Segel-Navier-Stokes System Involving a Tensor-Valued Sensitivity with Saturation[J]. Journal of Differential Equations, 2017, 262(10): 5271-5305. doi: 10.1016/j.jde.2017.01.024
|
WANG Y L, WINKLER M, XIANG Z Y. Global Classical Solutions in a Two-Dimensional Chemotaxis-Navier-Stokes System with Subcritical Sensitivity[J]. Annali Scuola Normale Superiore - Classe Di Scienze, 2018: 421-466. doi: 10.2422/2036-2145.201603_004
|
WANG Y L. Global Weak Solutions in a Three-Dimensional Keller-Segel-Navier-Stokes System with Subcritical Sensitivity[J]. Mathematical Models and Methods in Applied Sciences, 2017, 27(14): 2745-2780. doi: 10.1142/S0218202517500579
|
WINKLER M. Small-Mass Solutions in the Two-Dimensional Keller-Segel System Coupled to the Navier-Stokes Equations[J]. SIAM Journal on Mathematical Analysis, 2020, 52(2): 2041-2080. doi: 10.1137/19M1264199
|
WINKLER M. Does Fluid Interaction Affect Regularity in the Three-Dimensional Keller-Segel System with Saturated Sensitivity?[J]. Journal of Mathematical Fluid Mechanics, 2018, 20(4): 1889-1909. doi: 10.1007/s00021-018-0395-0
|
KE Y Y, ZHENG J S. An Optimal Result for Global Existence in a Three-Dimensional Keller-Segel-Navier-Stokes System Involving Tensor-Valued Sensitivity with Saturation[J]. Calculus of Variations and Partial Differential Equations, 2019, 58(3): 1-27.
|
CAO X R. Fluid Interaction does not Affect the Critical Exponent in a Three-Dimensional Keller-Segel-Stokes Model[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2020, 71(2): 1-21.
|
WANG Y L, XIANG Z Y. Global Existence and Boundedness in a Keller-Segel-Stokes System Involving a Tensor-Valued Sensitivity with Saturation[J]. Journal of Differential Equations, 2015, 259(12): 7578-7609. doi: 10.1016/j.jde.2015.08.027
|
FUJIE K, SENBA T. Application of an Adams Type Inequality to a Two-Chemical Substances Chemotaxis System[J]. Journal of Differential Equations, 2017, 263(1): 88-148. doi: 10.1016/j.jde.2017.02.031
|
FUJIE K, SENBA T. Blowup of Solutions to a Two-Chemical Substances Chemotaxis System in the Critical Dimension[J]. Journal of Differential Equations, 2019, 266(2/3): 942-976.
|
YU P. Blow-up Prevention by Saturated Chemotactic Sensitivity in a 2D Keller-Segel-Stokes System[J]. Acta Applicandae Mathematicae, 2020, 169(1): 475-497. doi: 10.1007/s10440-019-00307-8
|
WANG Y L, YANG L. Boundedness in a Chemotaxis-Fluid System Involving a Saturated Sensitivity and Indirect Signal Production Mechanism[J]. Journal of Differential Equations, 2021, 287: 460-490. doi: 10.1016/j.jde.2021.04.001
|
WINKLER M. Global Large-Data Solutions in a Chemotaxis-(Navier-)Stokes System Modeling Cellular Swimming in Fluid Drops[J]. Communications in Partial Differential Equations, 2012, 37(2): 319-351. doi: 10.1080/03605302.2011.591865
|
TAO Y S, WINKLER M. Boundedness in a Quasilinear Parabolic-Parabolic Keller-Segel System with Subcritical Sensitivity[J]. Journal of Differential Equations, 2012, 252(1): 692-715.
|