GIANTOMASSI A, FERRACUTI F, IARLORI S, et al. Electric Motor Fault Detection and Diagnosis by Kernel Density Estimation and Kullback-Leibler Divergence Based on Stator Current Measurements[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1770-1780. doi: 10.1109/TIE.2014.2370936
GAO Z W, CECATI C, DING S X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis with Model-Based and Signal-Based Approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767. doi: 10.1109/TIE.2015.2417501
BELLINI A, FILIPPETTI F, TASSONI C, et al. Advances in Diagnostic Techniques for Induction Machines[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4109-4125. doi: 10.1109/TIE.2008.2007527
KLIMAN G B, PREMERLANI W J, YAZICI B, et al. Sensorless Online Motor Diagnostics[J]. IEEE Computer Applications in Power, 1997, 10(2): 39-43. doi: 10.1109/67.582451
PONS L J, ANTONINO D A, RIERA G M, et al. Advanced Induction Motor Rotor Fault Diagnosis via Continuous and Discrete Time-Frequency Tools[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1791-1802. doi: 10.1109/TIE.2014.2355816
EREN L, DEVANEY M J. Bearing Damage Detection via Wavelet Packet Decomposition of the Stator Current[J]. IEEE Transaction on Instrumentation and Measurement, 2004, 53(2): 431-436. doi: 10.1109/TIM.2004.823323
STEFANO R D, MEO S, SCARANO M. Induction Motor Faults Diagnostic via Artificial Neural Network[J]. Proc IEEE Int Symp Ind Electron, 1994, 32(6): 220-225.
董华珍. 基于CNN的普米语孤立词语谱图分类[J]. 西南大学学报(自然科学版), 2021, 43(2): 160-168. doi: 10.13718/j.cnki.xdzk.2021.02.021
张冬妍, 韩睿, 张瑞, 等. 基于CapsNet神经网络的树叶图像分类模型[J]. 西南大学学报(自然科学版), 2021, 43(8): 143-151.
LI B, CHOW M Y, TIPSUWAN Y, et al. Neural Network Based Motor Rolling Bearing Fault Diagnosis[J]. IEEE Transactions on Industrial Electronics, 2000, 47(5): 1060-1069. doi: 10.1109/41.873214
KIM K, PARLOS A G, BHARADWAJ R M. Sensorless Fault Diagnosis of Induction Motors[J]. IEEE Transactions on Industrial Electronics, 2003, 50(5): 1038-1051. doi: 10.1109/TIE.2003.817693
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. doi: 10.1109/TPAMI.2019.2913372
ZHAO M, ZHONG S S, FU X Y, et al. Deep Residual Shrinkage Networks for Fault Diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690. doi: 10.1109/TII.2019.2943898
HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016: 770-778.
INCE T, KIRANYAZ S, EREN L, et al. Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067-7075. doi: 10.1109/TIE.2016.2582729
RENNA F, OLIVEIRA J, COIMBRA M T. Deep Convolutional Neural Networks for Heart Sound Segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(6): 2435-2445. doi: 10.1109/JBHI.2019.2894222
SHAO H D, JIANG H K, LIN Y, et al. A Novel Method for Intelligent Fault Diagnosis of Rolling Bearings Using Ensemble Deep Auto-Encoders[J]. Mechanical Systems and Signal Processing, 2018, 102: 278-297. doi: 10.1016/j.ymssp.2017.09.026
AMOH J, ODAME K. Deep Neural Networks for Identifying Cough Sounds[J]. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10(5): 1003-1011. doi: 10.1109/TBCAS.2016.2598794
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 4278-4284.