HINTON G E, SALAKHUTDINOV RR. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
|
VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and Composing Robust Features with Denoising Autoencoders[C] //ICML '08: Proceedings of the 25th international conference on Machine learning. 2008: 1096-1103.
|
SU S R, GAO Z F, ZHANG H Y, et al. Detection of Lumen and Media-Adventitia Borders in IVUS Images Using Sparse Auto-Encoder Neural Network[C] //2017 IEEE 14th International Symposium on Biomedical Imaging. Melbourne, VIC, Australia. IEEE, 2017: 1120-1124.
|
HAN J W, ZHANG D W, HU X T, et al. Background Prior-Based Salient Object Detection via Deep Reconstruction Residual[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(8): 1309-1321. doi: 10.1109/TCSVT.2014.2381471
|
XIE J Y, GIRSHICK R, FARHADI A. Unsupervised Deep Embedding for Clustering Analysis[C] //Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48. June 19-24, 2016, New York, NY, USA. New York: ACM, 2016: 478-487.
|
KING W I. The Annals of Mathematical Statistics[J]. The Annals of Mathematical Statistics, 1930, 1(1): 1-2. doi: 10.1214/aoms/1177733256
|
GUO X F, GAO L, LIU X W, et al. Improved Deep Embedded Clustering with Local Structure Preservation[C] //Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. August 19-26, 2017. Melbourne, Australia. California: International Joint Conferences on Artificial Intelligence Organization, 2017: 1753-1759.
|
JIANG Z X, ZHENG Y, TAN H C, et al. Variational Deep Embedding: an Unsupervised and Generative Approach to Clustering[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. August 19-26, 2017. Melbourne, Australia. California: International Joint Conferences on Artificial Intelligence Organization, 2017.
|
WANG C, PAN S R, HU R Q, et al. Attributed Graph Clustering: a Deep Attentional Embedding Approach[C] //Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. August 10-16, 2019. Macao, China. California: International Joint Conferences on Artificial Intelligence Organization, 2019.
|
PAN S R, HU R Q, FUNG S F, et al. Learning Graph Embedding with Adversarial Training Methods[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2475-2487. doi: 10.1109/TCYB.2019.2932096
|
BO D Y, WANG X, SHI C, et al. Structural Deep Clustering Network[C] //Proceedings of The Web Conference 2020. April 20-24, 2020, Taipei, New York: ACM, 2020: 1400-1410.
|
KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[EB/OL]. (2016-12-22)[2022-02-21]. https://arxiv.org/abs/1609.02907.
|
XIA C Y, HSU W, LEE M L, et al. BORDER: Efficient Computation of Boundary Points[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(3): 289-303. doi: 10.1109/TKDE.2006.38
|
QIU B Z, YUE F, SHEN J Y. BRIM: An Efficient Boundary Points Detecting Algorithm[M] //Advances in Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 761-768.
|
薛丽香, 邱保志. 基于变异系数的边界点检测算法[J]. 模式识别与人工智能, 2009, 22(5): 799-802. doi: 10.3969/j.issn.1003-6059.2009.05.020
|
邱保志, 杨洋, 杜效伟. BRINK: 基于局部质变因子的聚类边界检测算法[J]. 郑州大学学报(工学版), 2012, 33(3): 117-120. doi: 10.3969/j.issn.1671-6833.2012.03.030
|
XIANG L L. Clustering Boundary Detection Technology for Mixed Attribute Data Set[J]. Control and Decision, 2015, 30(1): 171-175.
|
LORE K G. LLNet: a Deep Autoencoder Approach to Natural Low-Light Image Enhancement[J]. Pattern Recognition, 2017, 61: 650-662. doi: 10.1016/j.patcog.2016.06.008
|
DAI J J, SONG H, SHENG G H, et al. Cleaning Method for Status Monitoring Data of Power Equipment Based on Stacked Denoising Autoencoders[J]. IEEE Access, 2017, 5: 22863-22870. doi: 10.1109/ACCESS.2017.2740968
|
SUN M, ZHANG X W, VAN HAMME H, et al. Unseen Noise Estimation Using Separable Deep Auto Encoder for Speech Enhancement[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(1): 93-104. doi: 10.1109/TASLP.2015.2498101
|
ZENG K, YU J, WANG R X, et al. Coupled Deep Autoencoder for Single Image Super-Resolution[J]. IEEE Transactions on Cybernetics, 2017, 47(1): 27-37. doi: 10.1109/TCYB.2015.2501373
|
MEHTA J. RODEO: Robust DE-AliasingautoencOder for Real-Time Medical Image Reconstruction[J]. Pattern Recognition, 2017, 63: 499-510. doi: 10.1016/j.patcog.2016.09.022
|
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning Representations by Back-Propagating Errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
|
NG A. Sparse Autoencoder[J]. CS294A Lecture Notes, 2011(72): 1-19.
|
MAKHZANI A, FREY B. K-Sparse Autoencoders[EB/OL]. (2014-03-22)[2022-03-21]. https://arxiv.org/abs/1312.5663.
|
KIPF T N, WELLING M. Variational Graph Auto-Encoders[EB/OL]. (2016-11-21)[2022-03-21]. https://arxiv.org/abs/1611.07308.
|
VAN D, MAATEN L, HINTON G. Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605.
|
LE CUN Y, MATAN O, BOSER B, et al. Handwritten Zip Code Recognition with Multilayer Networks[C] //[1990] Proceedings. 10th International Conference on Pattern Recognition. June 16-21, 1990, Atlantic City, NJ, USA. IEEE, 2002: 35-40.
|
STISEN A, BLUNCK H, BHATTACHARYA S, et al. Smart Devices are Different: Assessing and MitigatingMobile Sensing Heterogeneities for Activity Recognition[C] //SenSys '15: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. 2015: 127-140.
|
LEWIS D D, YANG Y M, ROSE T G, et al. RCV1: a New Benchmark Collection for Text Categorization Research[J]. Journal of Machine Learning Research, 2004, 5: 361-397.
|
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
|
XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms[EB/OL]. (2017-08-25)[2022-030-1]. https://arxiv.org/abs/1708.07747.
|
HARTIGAN J A, WONG M A. Algorithm AS 136: a K-Means Clustering Algorithm[J]. Applied Statistics, 1979, 28(1): 100. doi: 10.2307/2346830
|