YANG X L, XIE X Y, LI S Q, et al. The POM@MOF Hybrid Derived Hierarchical Hollow Mo/Co Bimetal Oxides Nanocages for Efficiently Activating Peroxymonosulfate to Degrade Levofloxacin [J]. Journal of Hazardous Materials, 2021, 419: 126360. doi: 10.1016/j.jhazmat.2021.126360
|
WANG J, WANG S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants [J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
|
LI R, CHAN K C, LIU X J, et al. Synthesis of Well-Aligned CuO Nanowire Array Integrated with Nanoporous CuO Network for Oxidative Degradation of Methylene Blue [J]. Corrosion Science, 2017, 126: 37-43. doi: 10.1016/j.corsci.2017.06.001
|
LIU X H, MA T T, PINNA N, et al. Two-Dimensional Nanostructured Materials for Gas Sensing [J]. Advanced Functional Materials, 2017, 27(37): 1702168. doi: 10.1002/adfm.201702168
|
LIU W X, YIN R L, XU X L, et al. Structural Engineering of Low-Dimensional Metal-Organic Frameworks: Synthesis, Properties, and Applications [J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2019, 6(12): 1802373.
|
郭昊, 孙涛涛, 王笑, 等. 一种类沸石咪唑酯骨架材料Cu-ZIF的合成及作为催化剂的应用, CN109020891B [P]. 2022-07-19.
|
DING Y, PAN C, PENG X, et al. Deep Mineralization of Bisphenol a by Catalytic Peroxymonosulfate Activation with Nano CuO/Fe3O4 with Strong Cu-Fe Interaction [J]. Chemical Engineering Journal, 2020, 384: 123378. doi: 10.1016/j.cej.2019.123378
|
LU X F, CHEN Y, WANG S B, et al. Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn-Air Batteries [J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(39): e1902339. doi: 10.1002/adma.201902339
|
ZHANG T, YUE X, GAO L, et al. Hierarchically Porous Bismuth Oxide/Layered Double Hydroxide Composites: Preparation, Characterization and Iodine Adsorption [J]. Journal of Cleaner Production, 2017, 144: 220-227. doi: 10.1016/j.jclepro.2017.01.030
|
张万鹏, 郑立庆, 杨鑫雨, 等. 球磨-煅烧法制备Fe3O4-CuxO及其活化Oxone降解盐酸左氧氟沙星[J]. 中国环境科学, 2020, 40(1): 143-152. doi: 10.3969/j.issn.1000-6923.2020.01.016
|
ZHAO J, XIAO P F, HAN S, et al. Preparation of Magnetic Copper Ferrite Nanoparticle as Peroxymonosulfate Activating Catalyst for Effective Degradation of Levofloxacin [J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2022, 85(2): 645-663. doi: 10.2166/wst.2021.627
|
LIU Y, GUO H, ZHANG Y, et al. Heterogeneous Activation of Peroxymonosulfate by Sillenite Bi25FeO40: Singlet Oxygen Generation and Degradation for Aquatic Levofloxacin [J]. Chemical Engineering Journal, 2018, 343: 128-137. doi: 10.1016/j.cej.2018.02.125
|
DONG Z T, NIU C G, GUO H, et al. Anchoring CuFe2O4 Nanoparticles into N-Doped Carbon Nanosheets for Peroxymonosulfate Activation: Built-in Electric Field Dominated Radical and Non-Radical Process [J]. Chemical Engineering Journal, 2021, 426: 130850. doi: 10.1016/j.cej.2021.130850
|
ZHOU H, WU S, ZHOU Y, et al. Insights into the Oxidation of Organic Contaminants by Iron Nanoparticles Encapsulated within Boron and Nitrogen Co-Doped Carbon Nanoshell: Catalyzed Fenton-Like Reaction at Natural pH [J]. Environment International, 2019, 128: 77-88. doi: 10.1016/j.envint.2019.04.006
|
ZHOU P, ZHANG J, ZHANG Y, et al. Degradation of 2, 4-Dichlorophenol by Activating Persulfate and Peroxomonosulfate Using Micron or Nanoscale Zero-Valent Copper [J]. Journal of Hazardous Materials, 2018, 344: 1209-1219. doi: 10.1016/j.jhazmat.2017.11.023
|
LI W, LI S, TANG Y, et al. Highly Efficient Activation of Peroxymonosulfate by Cobalt Sulfide Hollow Nanospheres for Fast Ciprofloxacin Degradation [J]. Journal of Hazardous Materials, 2020, 389: 121856. doi: 10.1016/j.jhazmat.2019.121856
|
LI Z Y, WANG F, ZHANG Y, et al. Activation of Peroxymonosulfate by CuFe2O4-CoFe2O4 Composite Catalyst for Efficient Bisphenol a Degradation: Synthesis, Catalytic Mechanism and Products Toxicity Assessment [J]. Chemical Engineering Journal, 2021, 423: 130093. doi: 10.1016/j.cej.2021.130093
|
LI N, LI R, DUAN X G, et al. Correlation of Active Sites to Generated Reactive Species and Degradation Routes of Organics in Peroxymonosulfate Activation by Co-Loaded Carbon [J]. Environmental Science & Technology, 2021, 55(23): 16163-16174.
|
LYU J, GE M, HU Z, et al. One-Pot Synthesis of Magnetic CuO/Fe2O3/CuFe2O4 Nanocomposite to Activate Persulfate for Levofloxacin Removal: Investigation of Efficiency, Mechanism and Degradation Route [J]. Chemical Engineering Journal, 2020, 389: 124456. doi: 10.1016/j.cej.2020.124456
|
HU P D, LONG M C. Cobalt-Catalyzed Sulfate Radical-Based Advanced Oxidation: a Review on Heterogeneous Catalysts and Applications [J]. Applied Catalysis B: Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
|
ZHANG W Q, ZHOU S Q, SUN J L, et al. Impact of Chloride Ions on UV/H2O2 and UV/Persulfate Advanced Oxidation Processes [J]. Environmental Science and Technology, 2018, 52(13): 7380-7389. doi: 10.1021/acs.est.8b01662
|
YAN J, LI J, PENG J, et al. Efficient Degradation of Sulfamethoxazole by the CuO@Al2O3 (EPC) Coupled PMS System: Optimization, Degradation Pathways and Toxicity Evaluation [J]. Chemical Engineering Journal, 2019, 359: 1097-1110. doi: 10.1016/j.cej.2018.11.074
|
ZHU M P, YANG J C E, DUAN X, et al. Interfacial CoAl2O4 from ZIF-67@γ-Al2O3 Pellets Toward Catalytic Activation of Peroxymonosulfate for Metronidazole Removal [J]. Chemical Engineering Journal, 2020, 397: 125339. doi: 10.1016/j.cej.2020.125339
|