MORTON K W. Numerical Solution of Convection-Diffusion Problems [M]. Boca Raton: CRC Press, 2019.
TIAN Z F, DAI S Q. High-Order Compact Exponential Finite Difference Methods for Convection-Diffusion Type Problems [J]. Journal of Computational Physics, 2007, 220(2): 952-974. doi: 10.1016/j.jcp.2006.06.001
陈文兴, 戴书洋, 田小娟, 等. 利用重心有理插值配点法求解一、二维对流扩散方程[J]. 西南师范大学学报(自然科学版), 2020, 45(8): 35-43.
PENG D Y. High-Order Numerical Method for Two-Point Boundary Value Problems [J]. Journal of Computational Physics, 1995, 120(2): 253-259. doi: 10.1006/jcph.1995.1162
AYUSO B, MARINI L D. Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems [J]. SIAM Journal on Numerical Analysis, 2009, 47(2): 1391-1420. doi: 10.1137/080719583
PHONGTHANAPANICH S, DECHAUMPHAI P. Combined Finite Volume and Finite Element Method for Convection-Diffusion-Reaction Equation [J]. Journal of Mechanical Science and Technology, 2009, 23(3): 790-801. doi: 10.1007/s12206-008-1204-0
SHIH Y, KELLOGG R B, TSAI P. A Tailored Finite Point Method for Convection-Diffusion-Reaction Problems [J]. Journal of Scientific Computing, 2010, 43(2): 239-260. doi: 10.1007/s10915-010-9354-5
ANGELINI O, BRENNER K, HILHORST D. A Finite Volume Method on General Meshes for a Degenerate Parabolic Convection-Reaction-Diffusion Equation [J]. Numerische Mathematik, 2013, 123(2): 219-257. doi: 10.1007/s00211-012-0485-5
BAUSE M, SCHWEGLER K. Higher Order Finite Element Approximation of Systems of Convection-Diffusion-Reaction Equations with Small Diffusion [J]. Journal of Computational and Applied Mathematics, 2013, 246: 52-64. doi: 10.1016/j.cam.2012.07.005
ADAK D, NATARAJAN E, KUMAR S. A New Nonconforming Finite Element Method for Convection Dominated Diffusion-Reaction Equations [J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2016, 8(4): 274-283. doi: 10.1007/s12572-016-0174-1
朱海涛, 欧阳洁. 对流-扩散-反应方程的变分多尺度解法[J]. 工程数学学报, 2009, 26(6): 997-1004.
兰斌, 薛文强, 葛永斌. 对流扩散反应方程基于坐标变换的高阶紧致差分格式[J]. 青岛科技大学学报(自然科学版), 2014, 35(1): 100-106.
JHA N, SINGH B. Exponential Basis and Exponential Expanding Grids Third(Fourth)-Order Compact Schemes for Nonlinear Three-Dimensional Convection-Diffusion-Reaction Equation [J]. Advances in Difference Equations, 2019, 2019(1): 1-27. doi: 10.1186/s13662-018-1939-6
SPOTZ W F. High-Order Compact Finite Difference Schemes for Computational Mechanics [D]. Austin: The University of Texas at Austin, 1995.
SUN H W, ZHANG J. A High-Order Finite Difference Discretization Strategy Based on Extrapolation for Convection Diffusion Equations [J]. Numerical Methods for Partial Differential Equations, 2004, 20(1): 18-32. doi: 10.1002/num.10075
RADHAKRISHNA PILLAI A C. Fourth-Order Exponential Finite Difference Methods for Boundary Value Problems of Convective Diffusion Type [J]. International Journal for Numerical Methods in Fluids, 2001, 37(1): 87-106. doi: 10.1002/fld.167
田芳, 葛永斌. 求解变系数对流扩散反应方程的指数型高精度紧致差分方法[J]. 工程数学学报, 2017, 34(3): 283-296.
杨苗苗, 葛永斌. 求解对流扩散反应方程的一种高精度紧致差分方法[J]. 四川师范大学学报(自然科学版), 2021, 44(4): 470-478.
梁昌弘, 马廷福, 葛永斌. 两点边值问题的混合型高精度紧致差分格式[J]. 宁夏大学学报(自然科学版), 2017, 38(1): 1-4.
王涛, 刘铁钢. 求解对流扩散方程的一致四阶紧致格式[J]. 计算数学, 2016, 38(4): 391-404.
SANYASIRAJU Y V S S, MISHRA N. Spectral Resolutioned Exponential Compact Higher Order Scheme(SRECHOS)for Convection-Diffusion Equations [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(51/52): 4737-4744.