RAHMAN M M, BHATTACHARYA P, DESAI B C. A Framework for Medical Image Retrieval Using Machine Learning and Statistical Similarity Matching Techniques with Relevance Feedback[J]. IEEE Transactions on Information Technology in Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society, 2007, 11(1): 58-69.
|
OWAIS M, ARSALAN M, CHOI J, et al. Effective Diagnosis and Treatment through Content-Based Medical Image Retrieval (CBMIR) by Using Artificial Intelligence[J]. Journal of Clinical Medicine, 2019, 8(4): 462. doi: 10.3390/jcm8040462
|
UNAR S, WANG X Y, ZHANG C, et al. Detected Text-Based Image Retrieval Approach for Textual Images[J]. IET Image Processing, 2019, 13(3): 515-521. doi: 10.1049/iet-ipr.2018.5277
|
QAYYUM A, ANWAR S M, AWAIS M, et al. Medical Image Retrieval Using Deep Convolutional Neural Network[J]. Neurocomputing, 2017, 266: 8-20. doi: 10.1016/j.neucom.2017.05.025
|
曾宪华, 袁知洪, 王国胤, 等. 基于多特征多核哈希学习的大规模图像检索[J]. 中国科学: 信息科学, 2017, 47(8): 1109-1126.
|
刘颖, 程美, 王富平, 等. 深度哈希图像检索方法综述[J]. 中国图象图形学报, 2020, 25(7): 1296-1317.
|
SINGH A, GUPTA S. Learning to Hash: A Comprehensive Survey of Deep Learning-Based Hashing Methods[J]. Knowledge and Information Systems, 2022, 64(10): 2565-2597. doi: 10.1007/s10115-022-01734-0
|
ANDONI A, INDYK P. Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions[J]. Communications of the ACM, 2008, 51(1): 117-122. doi: 10.1145/1327452.1327494
|
KONG W H, LI W J. Isotropic Hashing[C] //Proceedings of the 25th International Conference on Neural Information Processing Systems, Nevada, USA, 2012: 1646-1654.
|
陈昌红, 彭腾飞, 干宗良. 基于深度哈希算法的极光图像分类与检索方法[J]. 电子与信息学报, 2020, 42(12): 3029-3036.
|
LIU H M, WANG R P, SHAN S G, et al. Deep Supervised Hashing for Fast Image Retrieval[J]. International Journal of Computer Vision, 2019, 127(9): 1217-1234. doi: 10.1007/s11263-019-01174-4
|
LI W J, WANG S, KANG W C. Feature Learning Based Deep Supervised Hashing with Pairwise Labels[C] //Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, USA, 2016: 1711-1717.
|
CAO Y, LONG M S, LIU B, et al. Deep Cauchy Hashing for Hamming Space Retrieval[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Utah, USA, 2018: 1229-1237.
|
WANG X F, SHI Y, KITANI K M. Deep Supervised Hashing with Triplet Labels[C] //Asian Conference on Computer Vision, Taipei, China, 2016: 70-84.
|
LIU B, CAO Y, LONG M S, et al. Deep Triplet Quantization[C] //Proceedings of the 26th ACM international conference on Multimedia, Seoul, Republic of Korea, 2018: 755-763.
|
FANG J S, FU H Z, LIU J. Deep Triplet Hashing Network for Case-Based Medical Image Retrieval[J]. Medical Image Analysis, 2021, 69: 101981. doi: 10.1016/j.media.2021.101981
|
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you Need[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017: 5998-6008.
|
CARION N, MASSA F, SYNNAEVE G, et al. End-to-End Object Detection with Transformers[C] //European Conference on Computer Vision, Glasgow, UK, 2020: 213-229.
|
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[C] //The Ninth International Conference on Learning Representations, Vienna, Austria, 2021: 1-21.
|
HAN K, XIAO A, WU E H, et al. Transformer in Transformer[J]. Advances in Neural Information Processing Systems, 2021, 34: 15908-15919.
|
WANG W H, XIE E Z, LI X, et al. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, IEEE: 568-578.
|
HE S T, LUO H, WANG P C, et al. TransReID: Transformer-Based Object Re-Identification[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, IEEE: 15013-15022.
|
DUBEY S R, SINGH S K, CHU W T. Vision Transformer Hashing for Image Retrieval[C] //Proceedings-IEEE International Conference on Multimedia and Expo, Taipei, China, 2022 : 1-6.
|
CHEN Y B, ZHANG S, LIU F X, et al. TransHash: Transformer-Based Hamming Hashing for Efficient Image Retrieval[C] //Proceedings of the 2022 International Conference on Multimedia Retrieval, Newark, NJ, USA, 2022: 127-136.
|
LI T, ZHANG Z, PEI L S, et al. Hash Former: Vision Transformer Based Deep Hashing for Image Retrieval[J]. IEEE Signal Processing Letters, 2022, 29: 827-831. doi: 10.1109/LSP.2022.3157517
|
GONG Q K, WANG L D, LAI H J, et al. ViT2Hash: Unsupervised Information-Preserving Hashing[EB/OL]. 2022: arXiv: 05541. http://arxiv.org/abs/2201.05541.
|
ZHANG C L, WU J X. Improving CNN Linear Layers with Power Mean Non-Linearity[J]. Pattern Recognition, 2019, 89: 12-21. doi: 10.1016/j.patcog.2018.12.029
|
HE X Z, TAN E L, BI H W, et al. Fully Transformer Network for Skin Lesion Analysis[J]. Medical Image Analysis, 2022, 77: 102357. doi: 10.1016/j.media.2022.102357
|
LU H M, ZHANG M, XU X, et al. Deep Fuzzy Hashing Network for Efficient Image Retrieval[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(1): 166-176. doi: 10.1109/TFUZZ.2020.2984991
|
WANG X Q, LAN R S, WANG H D, et al. Fine-Grained Correlation Analysis for Medical Image Retrieval[J]. Computers and Electrical Engineering, 2021, 90: 106992. doi: 10.1016/j.compeleceng.2021.106992
|
XU L M, ZENG X H, ZHENG B C, et al. Multi-Manifold Deep Discriminative Cross-Modal Hashing for Medical Image Retrieval[J]. IEEE Transactions on Image Processing, 2022, 31: 3371-3385. doi: 10.1109/TIP.2022.3171081
|
YANG E K, LIU M X, YAO D R, et al. Deep Bayesian Hashing with Center Prior for Multi-Modal Neuroimage Retrieval[J]. IEEE Transactions on Medical Imaging, 2021, 40(2): 503-513. doi: 10.1109/TMI.2020.3030752
|
BA J L, KIROS J R, HINTON G E. Layer Normalization[EB/OL]. arXiv: 1607. 06450. http://arxiv.org/abs/1607.06450.
|
HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778.
|
邹细涛. 多标记跨模态语义哈希图文检索研究[D]. 重庆: 西南大学, 2022.
|
JIANG Q Y, LI W J. Asymmetric Deep Supervised Hashing[C] //Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 3342-3349.
|
ZHANG Z, ZOU Q, LIN Y W, et al. Improved Deep Hashing with Soft Pairwise Similarity for Multi-Label Image Retrieval[J]. IEEE Transactions on Multimedia, 2020, 22(2): 540-553. doi: 10.1109/TMM.2019.2929957
|
ZHENG X T, ZHANG Y C, LU X Q. Deep Balanced Discrete Hashing for Image Retrieval[J]. Neurocomputing, 2020, 403: 224-236. doi: 10.1016/j.neucom.2020.04.037
|
YU Z Y, WU S, DOU Z H, et al. Deep Hashing with Self-Supervised Asymmetric Semantic Excavation and Margin-Scalable Constraint[J]. Neurocomputing, 2022, 483: 87-104. doi: 10.1016/j.neucom.2022.01.082
|
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image Net Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
曾超, 白琮, 马青, 等. 基于对抗投影学习的跨模态哈希检索[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 904-912.
|