李嘉鑫, 李鹏钊, 王苗, 等. 锂离子电池热管理技术研究进展[J]. 过程工程学报, 2023, 23(8): 1102-1117.
赵延鹏, 王峰, 杨永发, 等. 基于作业工况和退役锂离子电池的电动拖拉机电源系统优化[J]. 中国农机化学报, 2022, 43(2): 104-111.
叶宇剑, 袁泉, 汤奕. 面向双碳目标的交通网-电网耦合网络中电动汽车负荷低碳优化方法[J]. 中国电力, 2023, 56(5): 72-79.
LU J H, XIONG R, TIAN J P, et al. Deep Learning to Predict Battery Voltage Behavior after Uncertain Cycling-Induced Degradation[J]. Journal of Power Sources, 2023, 581: 233473. doi: 10.1016/j.jpowsour.2023.233473
王榘, 熊瑞, 穆浩. 温度和老化意识融合驱动的电动车辆锂离子动力电池电量和容量协同估计[J]. 电工技术学报, 2020, 35(23): 4980-4987.
熊瑞. 动力电池管理系统核心算法[M]. 2版. 北京: 机械工业出版社, 2022.
梁新成, 张志冬, 黄国钧. 锂电池的电化学建模研究[J]. 西南大学学报(自然科学版), 2023, 45(3): 214-221.
王澎, 窦悦珊, 赵星, 等. 高镍三元锂离子电池衰减机制研究展望[J]. 西南大学学报(自然科学版), 2022, 44(3): 29-43.
张志刚, 张涛, 汤爱华, 等. 车用锂电池健康状态下快充方法研究综述[J]. 西南大学学报(自然科学版), 2022, 44(2): 194-206.
HU X S, XU L, LIN X K, et al. Battery Lifetime Prognostics[J]. Joule, 2020, 4(2): 310-346. doi: 10.1016/j.joule.2019.11.018
LU J H, XIONG R, TIAN J P, et al. Deep Learning to Estimate Lithium-Ion Battery State of Health Without Additional Degradation Experiments[J]. Nature Communications, 2023, 14(1): 2760. doi: 10.1038/s41467-023-38458-w
WANG W W, WANG J, TIAN J P, et al. Application of Digital Twin in Smart Battery Management Systems[J]. Chinese Journal of Mechanical Engineering, 2021, 34(4): 12-30.
胡权. 数字孪生体: 第四次工业革命的通用目的技术[M]. 北京: 人民邮电出版社, 2021.
WU B, WIDANAGE W D, YANG S C, et al. Battery Digital Twins: Perspectives on the Fusion of Models, Data and Artificial Intelligence for Smart Battery Management Systems[J]. Energy and AI, 2020, 1: 100016. doi: 10.1016/j.egyai.2020.100016
李海峰, 王炜. 数字孪生教育应用的教学模式探究——基于美国、瑞士和芬兰数字孪生教育应用的案例分析[J]. 现代教育技术, 2021, 31(7): 12-20.
LIANG J Y, LIU H, XIAO N C. A Hybrid Approach Based on Deep Neural Network and Double Exponential Model for Remaining Useful Life Prediction[J]. Expert Systems with Applications, 2024, 249: 123563. doi: 10.1016/j.eswa.2024.123563
LI F, ZUO W, ZHOU K, et al. State-of-Charge Estimation of Lithium-Ion Battery Based on Second Order Resistor-Capacitance Circuit-PSO-TCN Model[J]. Energy, 2024, 289: 130025. doi: 10.1016/j.energy.2023.130025
LAI X, GAO W K, ZHENG Y J, et al. A Comparative Study of Global Optimization Methods for Parameter Identification of Different Equivalent Circuit Models for Li-Ion Batteries[J]. Electrochimica Acta, 2019, 295: 1057-1066. doi: 10.1016/j.electacta.2018.11.134
LI X Y, WANG Z P, YAN J Y. Prognostic Health Condition for Lithium Battery Using the Partial Incremental Capacity and Gaussian Process Regression[J]. Journal of Power Sources, 2019, 421: 56-67. doi: 10.1016/j.jpowsour.2019.03.008
LI X Y, YUAN C G, LI X H, et al. State of Health Estimation for Li-Ion Battery Using Incremental Capacity Analysis and Gaussian Process Regression[J]. Energy, 2020, 190: 116467.
LIU Y, WU Z X, ZHOU H, et al. Development of China Light-Duty Vehicle Test Cycle[J]. International Journal of Automotive Technology, 2020, 21(5): 1233-1246.