KHOT L R, EHSANI R, MAJA J M, et al. Evaluation of Deposition and Coverage by an Air-Assisted Sprayer and Two Air-Blast Sprayers in a Citrus Orchard[J]. Transactions of the ASABE, 2014, 57(4): 1007-1013.
CROSS J V, WALKLATE P J, MURRAY R A, et al. Spray Deposits and Losses in Different Sized Apple Trees from an Axial Fan Orchard Sprayer: 1. Effects of Spray Liquid Flow Rate[J]. Crop Protection, 2001, 20(1): 13-30. doi: 10.1016/S0261-2194(00)00046-6
RITTNER T, ȚENU I, MARIAN O. Researches on the Reliability of Spraying Machines in Vineyards and Orchards[J]. Acta Universitatis Sapientiae, Agriculture and Environment, 2018, 10(1): 105-112. doi: 10.2478/ausae-2018-0009
JAVIER GARCÍA-RAMOS F, MALÓN H, JAVIER AGUIRRE A, et al. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans[J]. Sensors, 2015, 15(2): 2399-2418. doi: 10.3390/s150202399
HONG S W, ZHAO L Y, ZHU H P. CFD Simulation of Pesticide Spray from Air-Assisted Sprayers in an Apple Orchard: Tree Deposition and Off-Target Losses[J]. Atmospheric Environment, 2018, 175: 109-119. doi: 10.1016/j.atmosenv.2017.12.001
HOŁOWNICKI R, DORUCHOWSKI G, ŚWIECHOWSKI W, et al. Variable Air Assistance System for Orchard Sprayers: Concept, Design and Preliminary Testing[J]. Biosystems Engineering, 2017, 163: 134-149. doi: 10.1016/j.biosystemseng.2017.09.004
ADAMIDES G, KATSANOS C, CONSTANTINOU I, et al. Design and Development of a Semi-Autonomous Agricultural Vineyard Sprayer: Human-Robot Interaction Aspects[J]. Journal of Field Robotics, 2017, 34(8): 1407-1426. doi: 10.1002/rob.21721
DUGA A T, DELELE M A, RUYSEN K, et al. Development and Validation of a 3D CFD Model of Drift and Its Application to Air-Assisted Orchard Sprayers[J]. Biosystems Engineering, 2017, 154: 62-75. doi: 10.1016/j.biosystemseng.2016.10.010
SALCEDO R, VALLET A, GRANELL R, et al. Eulerian-Lagrangian Model of the Behaviour of Droplets Produced by an Air-Assisted Sprayer in a Citrus Orchard[J]. Biosystems Engineering, 2017, 154: 76-91. doi: 10.1016/j.biosystemseng.2016.09.001
ZHOU J F, KHOT L R, BAHLOL H Y, et al. In-Field Sensing for Crop Protection: Efficacy of Air-Blast Sprayer Generated Crosswind in Rainwater Removal from Cherry Canopies[J]. Crop Protection, 2017, 91: 27-33. doi: 10.1016/j.cropro.2016.09.010
SOLANELLES F, ESCOLÀ A, PLANAS S, et al. An Electronic Control System for Pesticide Application Proportional to the Canopy Width of Tree Crops[J]. Biosystems Engineering, 2006, 95(4): 473-481. doi: 10.1016/j.biosystemseng.2006.08.004
OSTERMAN A, GODEŠA T, HOČEVAR M, et al. Real-Time Positioning Algorithm for Variable-Geometry Air-Assisted Orchard Sprayer[J]. Computers and Electronics in Agriculture, 2013, 98: 175-182. doi: 10.1016/j.compag.2013.08.013
蒋焕煜, 周鸣川, 李华融, 等. PWM变量喷雾系统动态雾滴分布均匀性实验[J]. 农业机械学报, 2015, 46(3): 73-77.
伍志军, 廖红, 邓家波, 等. 基于CFD离散型静电喷药沉积特性数值仿真研究[J]. 河南农业大学学报, 2022, 56(5): 849-857.
LEŠNIK M, STAJNKO D, VAJS S. Interactions between Spray Drift and Sprayer Travel Speed in Two Different Apple Orchard Training Systems[J]. International Journal of Environmental Science and Technology, 2015, 12(9): 3017-3028. doi: 10.1007/s13762-014-0724-7
MIRANDA-FUENTES A, RODRÍGUEZ-LIZANA A, CUENCA A, et al. Improving Plant Protection Product Applications in Traditional and Intensive Olive Orchards through the Development of New Prototype Air-Assisted Sprayers[J]. Crop Protection, 2017, 94: 44-58. doi: 10.1016/j.cropro.2016.12.012
薛新宇, 兰玉彬. 美国农业航空技术现状和发展趋势分析[J]. 农业机械学报, 2013, 44(5): 194-201.
姜红花, 白鹏, 刘理民, 等. 履带自走式果园自动对靶风送喷雾机研究[J]. 农业机械学报, 2016, 47(S1): 189-195.
CLINT HOFFMANN W, FRITZ B K, LAN Y B. Using Laser Diffraction to Measure Agricultural Sprays: Common Sources of Error When Making Measurements[J]. International Journal of Precision Agricultural Aviation, 2018, 1(1): 15-18. doi: 10.33440/j.ijpaa.20180101.0005
CAI J C, WANG X, SONG J, et al. Development of Real-Time Laser-Scanning System to Detect Tree Canopy Characteristics for Variable-Rate Pesticide Application[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6): 155-163. doi: 10.25165/j.ijabe.20171006.3140
万鹏龙, 彭刚, 李建国, 等. 荔枝果园风送式喷雾机喷药的思考[J]. 热带农业工程, 2023, 47(4): 118-121.
FRITZ B K, CLINT HOFFMANN W. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction[J]. Journal of Visualized Experiments, 2016(115): 54533.
李继宇, 郭爽, 姚伟祥, 等. 气流作业下雾滴粒径稻株间分布特性与风洞模拟试验[J]. 农业机械学报, 2019, 50(8): 148-156.
张慧春, 周宏平, 郑加强, 等. 喷头雾化性能及雾滴沉积可视化模型研究[J]. 林业工程学报, 2016, 1(3): 91-96.
马驰. 丘陵山地柑橘果园双向自动喷药系统的研究[D]. 重庆: 西南大学, 2018.
朱晨辉. 履带式烟叶采收机液压行驶系统设计及控制方法研究[D]. 郑州: 河南农业大学, 2020.
俞龙, 洪添胜, 赵祚喜, 等. 基于超声波的果树冠层三维重构与体积测量[J]. 农业工程学报, 2010, 26(11): 204-208. doi: 10.3969/j.issn.1002-6819.2010.11.035
李鹏, 张明, 戴祥生, 等. 基于不规则三棱柱分割法实时测算果树冠层体积[J]. 中国农业科学, 2019, 52(24): 4493-4504. doi: 10.3864/j.issn.0578-1752.2019.24.005
李鹏. 基于激光传感器的果树冠层信息探测及风送式对靶喷雾机研发[D]. 重庆: 西南大学, 2021.
刘理民. 基于果树冠层探测的变量喷雾技术研究与试验[D]. 泰安: 山东农业大学, 2019.
窦汉杰, 翟长远, 王秀, 等. 基于LiDAR的果园对靶变量喷药控制系统设计与试验[J]. 农业工程学报, 2022, 38(3): 11-21.
中华人民共和国农业部. 喷雾机(器) 作业质量: NY/T 650—2013[S]. 北京: 中国农业出版社, 2014.
袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系[J]. 植物保护, 2015, 41(6): 9-16. doi: 10.3969/j.issn.0529-1542.2015.06.002
陈子文, 胡宗锐, 熊扬凡, 等. 树冠环绕式仿形对靶施药机设计与试验[J]. 农业工程学报, 2023, 39(3): 23-32.
中华人民共和国工业和信息化部. 植物保护机械 通用试验方法: JB/T 9782—2014[S]. 北京: 机械工业出版社, 2014.