ANDERSSON Ö, BÖRJESSON P. The Greenhouse Gas Emissions of an Electrified Vehicle Combined with Renewable Fuels: Life Cycle Assessment and Policy Implications [J]. Applied Energy, 2021, 289: 116621.
KUMAR R R, ALOK K. Adoption of Electric Vehicle: A Literature Review and Prospects for Sustainability [J]. Journal of Cleaner Production, 2020, 253: 119911.
GUO J F, ZHANG X M, GU F, et al. Does Air Pollution Stimulate Electric Vehicle Sales? Empirical Evidence from Twenty Major Cities in China [J]. Journal of Cleaner Production, 2020, 249: 119372.
时珊珊, 崔正达, 陈颖, 等. 电气化交通和城市电网协同韧性提升方法综述[J]. 电工电能新技术, 2022, 41(3): 43-54.
NG M F, ZHAO J, YAN Q Y, et al. Predicting the State of Charge and Health of Batteries Using Data-Driven Machine Learning [J]. Nature Machine Intelligence, 2020, 2(3): 161-170.
ZHU J G, WANG Y X, HUANG Y, et al. Data-Driven Capacity Estimation of Commercial Lithium-Ion Batteries from Voltage Relaxation [J]. Nature Communications, 2022, 13(1): 2261.
《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017 [J]. 中国公路学报, 2017, 30(6): 1-197.
HANNAN M A, LIPU M S H, HUSSAIN A, et al. A Review of Lithium-Ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations [J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
DOYLE M, FULLER T F, NEWMAN J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell [J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16): 20-31.
LAMORGESE A, MAURI R, TELLINI B. Electrochemical-Thermal P2D Aging Model of a LiCoO2/Graphite Cell: Capacity Fade Simulations [J]. Journal of Energy Storage, 2018, 20: 289-297.
YANG B, WANG J T, CAO P L, et al. Classification, Summarization and Perspectives on State-of-Charge Estimation of Lithium-Ion Batteries Used in Electric Vehicles: A Critical Comprehensive Survey [J]. Journal of Energy Storage, 2021, 39: 102572.
WANG L X, DUAN J D, ZHAO K, et al. Online State of Charge Estimation of LiFePO4 Battery Based on EKF-AUKF Algorithm with Reference Compensation for Estimation Results [J]. Journal of Energy Storage, 2024, 100: 113504.
SHARMA S, GARG A, PANIGRAHI B K. Predicting State-of-Charge Using Gradient-Boosted SVR Ensemble Technique for Lithium Ion Battery Used in EVs [J]. IEEE Transactions on Transportation Electrification, 2024, 10(2): 4441-4454.
LI F, ZUO W, ZHOU K, et al. State of Charge Estimation of Lithium-Ion Batteries Based on PSO-TCN-Attention Neural Network [J]. Journal of Energy Storage, 2024, 84: 110806.
DAI H F, YU C C, WEI X Z, et al. State of Charge Estimation for Lithium-Ion Pouch Batteries Based on Stress Measurement [J]. Energy, 2017, 129: 16-27.
KIM Y, SAMAD N A, OH K Y, et al. Estimating State-of-Charge Imbalance of Batteries Using Force Measurements [C] //2016 American Control Conference (ACC). New York: IEEE, 2016: 1500-1505.
STURM J, SPINGLER F B, RIEGER B, et al. Non-Destructive Detection of Local Aging in Lithium-Ion Pouch Cells by Multi-Directional Laser Scanning [J]. Journal of the Electrochemical Society, 2017, 164(7): A1342-A1351.
JONES E M C, ÇAPRAZ, WHITE S R, et al. Reversible and Irreversible Deformation Mechanisms of Composite Graphite Electrodes in Lithium-Ion Batteries [J]. Journal of the Electrochemical Society, 2016, 163(9): A1965-A1974.
徐成善, 卢兰光, 欧阳明高, 等. 车用动力电池"呼吸效应" 的研究[J]. 汽车工程, 2018, 40(12): 1413-1417, 1434.
YIN X S, TANG W, JUNG I D, et al. Insights into Morphological Evolution and Cycling Behaviour of Lithium Metal Anode under Mechanical Pressure [J]. Nano Energy, 2018, 50: 659-664.
WEBER R, GENOVESE M, LOULI A J, et al. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte [J]. Nature Energy, 2019, 4(8): 683-689.
WANG M J, CHOUDHURY R, SAKAMOTO J. Characterizing the Li-Solid-Electrolyte Interface Dynamics as a Function of Stack Pressure and Current Density [J]. Joule, 2019, 3(9): 2165-2178.
JIANG B, TAO S Y, WANG X Y, et al. Mechanics-Based State of Charge Estimation for Lithium-Ion Pouch Battery Using Deep Learning Technique [J]. Energy, 2023, 278: 127890.
REN W J, XIE X Y, YI Y, et al. The LiFePO4 Battery Lifespan SoC Estimation Using Ham-Informer and Internal Pressure [J]. Journal of Energy Storage, 2024, 88: 111474.
BAI S J, KOLTER J Z, KOLTUN V, et al. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling [EB/OL]. (2018-03-04) [2024-11-15]https://arxiv.org/abs/1803.01271v2.
LUNDBERG S M, ERION G, CHEN H, et al. From Local Explanations to Global Understanding with Explainable AI for Trees [J]. Nature Machine Intelligence, 2020, 2(1): 56-67.
LUNDBERG S M, LEE S I. A Unified Approach to Interpreting Model Predictions [EB/OL]. (2017-12-04) [2024-10-26]. https://www.semanticscholar.org/reader/442e10a3c6640ded9408622005e3c2a8906ce4c2.
XIAO Z H, JIANG B, ZHU J G, et al. State of Health Estimation for Lithium-Ion Batteries Using an Explainable XGBoost Model with Parameter Optimization [J]. Batteries, 2024, 10(11): 394.
HUANG F Y, ZHANG X Y. A New Interpretable Streamflow Prediction Approach Based on SWAT-BiLSTM and SHAP [J]. Environmental Science and Pollution Research International, 2024, 31(16): 23896-23908.
CHEN X, MORAGA P. Forecasting Dengue across Brazil with LSTM Neural Networks and SHAP-Driven Lagged Climate and Spatial Effects [J]. BMC Public Health, 2025, 25(1): 973.