陈斯养, 靳宝.一类具分段常数变量的捕食-食饵系统的Neimark-Sacker分支[J].生态学报, 2015, 35(7) : 2339-2348.
杜文举, 张建刚, 俞建宁, 等.三维离散类Lorenz系统的Neimark-sacker分岔[J].四川大学学报(自然科学版), 2015, 52(6): 1297-1302.
HE Zhi-min, XIN Lai. Bifurcation and Chaotic Behavior of a Discrete-Time Predator-Prey System [J]. Nonlinear Analysis: Real World Applications, 2011, 12(1): 403-417. doi: 10.1016/j.nonrwa.2010.06.026
YUAN Li-guo, YANG Qi-gui. Bifurcation, Invariant Curve and Hybrid Control in a Discrete-Time Predator-Prey System [J]. Applied Mathematical Modelling, 2015, 39(8): 2345-2362. doi: 10.1016/j.apm.2014.10.040
JING, Zhu-jun, YANG Jian-ping. Bifurcation and Chaos in Discrete-Time Predator-Prey System [J]. Chaos, Solitons & Fractals, 2006, 27(1): 259-277.
LIU Xiao-li, XIAO Dong-mei. Complex Dynamic Behaviors of a Discrete-Time Predator-Prey System [J]. Chaos, Solitons & Fractals, 2007, 32(1): 80-94.
GUIN L N. Existence of Spatial Patterns in a Predator-Prey Model with Self-and Cross-Diffusion [J]. Applied Mathematics and Computation, 2014, 226: 320-335. doi: 10.1016/j.amc.2013.10.005
CARACCIOLO D, NOTO L V, ISTANBULLUOGLU E, et al. Climate Change and Ecotone Boundaries: Insights from a Cellular Automata Ecohydrology Model in a Mediterranean Catchment with Topography Controlled Vegetation Patterns [J]. Advances in Water Resources, 2014, 73: 159-175. doi: 10.1016/j.advwatres.2014.08.001
WEN Gui-lin. Criterion to Identify Hopf Bifurcations in Maps of Arbitrary Dimension [J]. Physical Review E, 2005, 72(2): 026201. doi: 10.1103/PhysRevE.72.026201
WANG Qian, FAN Meng, WANG Ke. Dynamics of a Class of Nonautonomous Semi-Ratio-Dependent Predator-Prey Systems with Functional Responses [J]. Journal of Mathematical Analysis and Applications, 2003, 278(2): 443-471. doi: 10.1016/S0022-247X(02)00718-7