Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2017 Volume 39 Issue 6
Article Contents

Hong-yao LI, Xing-ping WU, Chun-lei TANG. Multiplicity of Positive Solutions for the Choquard Equation with a Disturbance Term[J]. Journal of Southwest University Natural Science Edition, 2017, 39(6): 74-80. doi: 10.13718/j.cnki.xdzk.2017.06.012
Citation: Hong-yao LI, Xing-ping WU, Chun-lei TANG. Multiplicity of Positive Solutions for the Choquard Equation with a Disturbance Term[J]. Journal of Southwest University Natural Science Edition, 2017, 39(6): 74-80. doi: 10.13718/j.cnki.xdzk.2017.06.012

Multiplicity of Positive Solutions for the Choquard Equation with a Disturbance Term

More Information
  • Corresponding author: Xing-ping WU ; 
  • Received Date: 27/12/2016
    Available Online: 20/06/2017
  • MSC: O176.3

  • In this article, we study a nonlinear Choquard equation with steep potential and a disturbance term $ - \Delta u + {V_\mu }u = \left( {{K_\alpha }\left( x \right) * {{\left| u \right|}^p}} \right){\left| u \right|^{p - 2}}u + f\left( x \right)\;\;\;\;\;\;x \in {\mathbb{R}^N}$ Two positive solutions of the equation are obtained by the Ekeland variational principle and the mountain-pass lemma.
  • 加载中
  • [1] LIEB E H. Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation [J]. Studies in Appl Math, 1977, 57:93-105. doi: 10.1002/sapm.v57.2

    CrossRef Google Scholar

    [2] MOROZ V, VAN SCHAFTINGEN J. Groundstates of Nonlinear Choquard Equations:Existence, Qualitative Properties and Decay Asymptotics [J]. J Funct Anal, 2013, 265(2):153-184. doi: 10.1016/j.jfa.2013.04.007

    CrossRef Google Scholar

    [3] CLAPP M, SALAZAR D. Positive and Sign Changing Solutions to a Nonlinear Choquard Equation [J]. J Math Anal Appl, 2013, 407(1):1-15. doi: 10.1016/j.jmaa.2013.04.081

    CrossRef Google Scholar

    [4] KVPPER T, ZHANG Z J, XIA H Q. Multiple Positive Solutions and Bifurcation for an Equation Related to Choquard's Equation [J]. Proc Edinb Math Soc, 2003, 46(3):597-607. doi: 10.1017/S0013091502000779

    CrossRef Google Scholar

    [5] LV D F. A Note on Kirchhoff-Type Equations with Hartree-Type Nonlinearities [J]. Nonlinear Anal, 2014, 99:35-48. doi: 10.1016/j.na.2013.12.022

    CrossRef Google Scholar

    [6] LV D F. Existence and Concentration of Solutions for a Nonlinear Choquard Equation [J]. Mediterr J Math, 2015, 12(3):839-850. doi: 10.1007/s00009-014-0428-8

    CrossRef Google Scholar

    [7] LIEB E H, LOSS M. Analysis [M]. 2th ed. Providence, RI:American Mathematical Society, 2001.

    Google Scholar

    [8] MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian Systems [M]. New York:Springer-Verlag, 1989.

    Google Scholar

    [9] WILLEN M. Minimax Theorems [M]. Boston:Birkhuser, 1996.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2198) PDF downloads(170) Cited by(0)

Access History

Other Articles By Authors

Multiplicity of Positive Solutions for the Choquard Equation with a Disturbance Term

    Corresponding author: Xing-ping WU ; 

Abstract: In this article, we study a nonlinear Choquard equation with steep potential and a disturbance term $ - \Delta u + {V_\mu }u = \left( {{K_\alpha }\left( x \right) * {{\left| u \right|}^p}} \right){\left| u \right|^{p - 2}}u + f\left( x \right)\;\;\;\;\;\;x \in {\mathbb{R}^N}$ Two positive solutions of the equation are obtained by the Ekeland variational principle and the mountain-pass lemma.

  • 本文主要研究方程

    正解的多重性.其中N≥3, α∈(0, N), p $\left( \frac{N+\alpha }{N},\frac{N+\alpha }{N-2} \right)$ , f满足条件(f1), (f2):

    (f1) fL2( $\mathbb{R}$ N)\{0};

    (f2) f (x)≥0 (∀x $\mathbb{R}$ N).

    Vμ(x)=1+μg (x), μ>0是一个变量, g (x)满足条件(g1), (g2), (g3):

    (g1) g (x)∈C ( $\mathbb{R}$ N, $\mathbb{R}$ ), g (x)≥0 (∀x $\mathbb{R}$ N);

    (g2) Ω=int g-1(0) ≠∅是有界的光滑区域, 且Ω=g-1(0);

    (g3)存在M>0, {x $\mathbb{R}$ N|g (x)≤M}是非空且测度有限的集合.

    Kα: $\mathbb{R}$ N $\mathbb{R}$ 是Riesz位势,

    带Hartree项的椭圆方程是最近几年的研究热点之一.文献[1]研究并得到了这类方程最小解的存在性和唯一性.文献[2]得到了其基态解及相关性质.文献[3]研究了这类方程的正解和变号解.文献[4]提出了带有扰动项的Choquard方程, 并且用集中紧性原理和分歧理论证明了方程存在两个正解及分歧点.文献[5-6]研究了带有陡峭位势的Choquard方程

    并得到了方程(2) 基态解的存在性和解的集中性.受以上结果的启发, 本文主要研究带有扰动项的这类方程在N维空间下正解的多重性.

    本文主要的结果是:

    定理1 若N≥3, α∈(0, N), p $\left( \frac{N+\alpha }{N},\frac{N+\alpha }{N-2} \right)$ , Vμ(x)=1+μg (x), 函数f, g满足条件(f1)-(f2), (g1)-(g3).则存在常数μ*, δ, 使得当μμ*>0, |f|2δ时, 方程(1) 存在两个正解.

    为了证明定理, 令

    由文献[6]知 $\mathscr{H}$ 是希尔伯特空间, 其内积和范数分别为:

    易知方程(1) 的弱解和泛函I的临界点是一一对应的.定义方程(1) 的能量泛函I: $\mathscr{H}$ $\mathscr{R}$

    其中

    由条件(f1)-(f2), (g1)-(g3)可知, IC1( $\mathscr{H}$ , $\mathbb{R}$ ).若u $\mathscr{H}$ I的一个临界点, 即对任意的v $\mathscr{H}$ , 有

    引理1若{un}⊂ $\mathscr{H}$ I的有界(PS)c序列, unu0 $\mathscr{H}$ .那么unu0 $\mathscr{H}$ , I (u0)=c.反之, cI (u0)+m.其中:

     因为{un}是I的有界(PS)c序列, 则有:

    unu0 $\mathscr{H}$ , 令vn=un-u0, 在H中有vn0.类似文献[6]中引理2.6的相关计算, 可得

    $\mathscr{H}$ 中, 当vn→0时, 有unu0 $\mathscr{H}$ , $\mathop {\lim }\limits_{n \to \infty } $ I (un)=I (u0)=c.

    当‖vnμη>0时, 取一个序列{tn}, 满足

    化简整理可得

    所以tnvn $\mathscr{M}$ .由文献[6]可知, {vn}是I0(u)的(PS)c序列, 且:

    根据m的定义, 有

    等式(3) 两边取极限, 有cI (u0)+m.

    引理2 令Sr={u $\mathscr{H}$ :‖uμ=r}, Br={u $\mathscr{H}$ :‖uμr}, Br是一个闭凸集.则存在常数r, ρ>0, 使得:

    证由Hardy-Littlewood-Sobolev不等式[7]可知

    μ>0时, 根据Sobolev嵌入和范数的定义, 存在常数b>0, 有:

    故存在 $r={{\left( \frac{p}{2b{{c}_{N,\alpha ,p}}} \right)}^{\frac{1}{2p-2}}},\rho =\frac{{{r}^{2}}}{8}>0,$ ${{\left\| u \right\|}_{\mu }}=r,\left| {{f}_{2}} \right|\le \frac{r}{8}$ 时, 有

    u $\mathscr{H}$ 使得∫ $\mathbb{R}$ Nfudx>0时, 因为当t→0时, 有

    所以存在t0, 使得t0uBr, $\underset{u\in {{B}_{r}}}{\mathop{\text{inf}}}\,$ I (t0u)<0.

    引理3 泛函I满足下列条件:

    (ⅰ)存在r, ρ>0, 使得当‖uμ=r时, 有Iρ>0;

    (ⅱ)存在e $\mathscr{H}$ , 使得‖eμrI (e)<0.

      (ⅰ)由引理2已证. (ⅱ)当t>0, w>0时, 有:

    t充分大时, 存在‖u+t0wμr, 使得I (u+t0w)<0.故令e=u+t0w, 则I (e)<0.

    引理4 设fy(x)=(1+x2)p(1+y2)p-1-(x2)p(y2)p-p (x2+y2).当x $\mathbb{R}$ , y $\mathbb{R}$ , α∈(0, N), p $\left( \frac{N+\alpha }{N},\frac{N+\alpha }{N-2} \right)$ 时, min fy(x)≥0.

     因为p≥1, 当x>0时, 有

    同理可得, 当x<0时, fy′(x)<0, 则函数fy(x)在(-∞, 0) 上单调递减, 在(0, +∞)上单调递增, 故函数fy(x)在零点取得极小值.又因

    所以min fy(x)≥0.

    定理1的证明

    由文献[8]中定理4.1的Ekeland变分原理可知, 存在极小化序列{un}⊂Br, 使得:

    由标准计算可知:

    其中c0IBr中的极小值.由Br是一个闭凸集, {un}显然有界.则存在u*Br, 使得unu*(x $\mathscr{H}$ ).又因为

    由引理1可知, 在 $\mathscr{H}$ unu*, $\mathop {\lim }\limits_{n \to \infty } $ I (un)=I (u*)=c0<0.对任意v $\mathscr{H}$ , 有

    那么u*I的临界点, 且u*≠0.下证u*≥0.当v=u*-时, 因为

    所以

    由强极大值原理有u*>0.所以u*是方程(1) 的一个正解.

    由引理3知, I具有山路结构.由山路引理[9], 存在序列{un}⊂ $\mathscr{H}$ , 使得当n→∞时, 有:

    其中:

    首先对c估值, cI (u*)+m.事实上, 由引理4可知

    因为

    又因u*是方程(1) 的一个正解, 则

    根据(6), (7) 式可知

    wI0的临界点[6], 当t=1时, 有

    I0(tw)关于t求二阶导, 有

    $t \in \left( {\frac{1}{{{{(2{p_1})}^{\frac{1}{{2p - 2}}}}}}, + \infty } \right)$ 时, I0′(tw)单调递减.又因I0′(w)=0, 所以当t>1时, I0(tw)<I0(w).由m的定义, I0(tw)<I0(w)<m.所以:

    其次证明{un}有界.

    p>1时, {un}在 $\mathscr{H}$ 中有界, 从而存在子列(不妨记为{un})及u** $\mathscr{H}$ , 使得当n→∞时, 在H中有unu**.对任意φ $\mathscr{H}$ , 有〈I′(u**), φ〉=0, 故u**是方程(1) 的一个弱解.

    I (u**)<I (u*)<0时, u**≠0;

    I (u**)≥I (u*)时, 根据c的估值, cI (u*)+mI (u**)+m.由引理1知, 在 $\mathscr{H}$ unu**, $\mathop {\lim }\limits_{n \to \infty } $ I (un)=I (u**)=c>0.则u**≠0.下证u**≥0.当φ=u**-时, 有

    所以‖u**-μ2=0, u=u**+≥0.再由强极大值原理知u**>0.综上可知u*, u**是方程(1) 的两个正解.

Reference (9)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return