Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2017 Volume 39 Issue 8
Article Contents

Zi-zun LI, Chang-qing LIU. Generalization of a Class of Integral Inequalities with Gronwall-Bellman Type for Discontinuous Functions[J]. Journal of Southwest University Natural Science Edition, 2017, 39(8): 89-96. doi: 10.13718/j.cnki.xdzk.2017.08.013
Citation: Zi-zun LI, Chang-qing LIU. Generalization of a Class of Integral Inequalities with Gronwall-Bellman Type for Discontinuous Functions[J]. Journal of Southwest University Natural Science Edition, 2017, 39(8): 89-96. doi: 10.13718/j.cnki.xdzk.2017.08.013

Generalization of a Class of Integral Inequalities with Gronwall-Bellman Type for Discontinuous Functions

More Information
  • Corresponding author: Chang-qing LIU
  • Received Date: 04/11/2016
    Available Online: 20/08/2017
  • MSC: O178

  • In this paper, we give the upper bound estimation of an unknown function containing three nonlinear terms of integral inequality for discontinuous functions. The result is used to estimate the upper bounds of impulsive differential equations.
  • 加载中
  • [1] AGARWAL R P, DENG Sheng-fu, ZHANG Wei-nian. Generalization of a Retarded Gronwall-Like Inequality and Its Applications [J]. Appl Math Comput, 2005, 165: 599-612.

    Google Scholar

    [2] BORYSENKO S D. About Asymptotical Stability on Linear Approximation of the Systems with Impulse Influence [J]. Ukrain Mat Zh, 1983, 35(2): 144-150.

    Google Scholar

    [3] BORYSENKO S D. About One Integral Inequality for Piece-Wise Continuous Functions [M]. Proc. XInt: Kravchuk Conf, Kyiv, 2004: 323.

    Google Scholar

    [4] BORYSENKO S D, CIARLETTA M, IOVANE G. Integro-Sum Inequalities and Motion Stability of Systems with Impulse Perturbations [J]. Nonlnear Anal, 2005, 62: 417-428. doi: 10.1016/j.na.2005.03.032

    CrossRef Google Scholar

    [5] GLLO A, PICCIRILO A M. About New Analogies of Gronwall-Bellman-Bihari Type Inequalities for Discontinuous Functions and Estimated Solutions for Impulsive Differential Systems [J]. Nonlnear Anal, 2007, 67: 1550-1559. doi: 10.1016/j.na.2006.07.038

    CrossRef Google Scholar

    [6] GLLO A, PICCIRILO A M. About Some New Generalizations of Bellman-Bihari Results for Integro-Functional Inequalities with Discontinuous Functions and Applications [J]. Nonlnear Anal, 2009, 71: e2276-e2287. doi: 10.1016/j.na.2009.05.019

    CrossRef Google Scholar

    [7] IOVANE G. Some New Integral Inequalities of Bellman-Bihari Type with Delay for Discontinuous Functions [J]. Nonlnear Anal, 2007, 66: 498-508. doi: 10.1016/j.na.2005.11.043

    CrossRef Google Scholar

    [8] 李自尊.脉冲积分不等式未知函数的估计[J].四川师范大学学报(自然科学版), 2013, 36(2): 258-262.

    Google Scholar

    [9] 柳长青, 李自尊.一类新的非连续函数积分不等式及其应用[J].理论数学, 2013(3): 4-8.

    Google Scholar

    [10] 孟东沅.一类新型不连续函数的积分不等式及应用[J].数学的实践与认识, 2009, 39: 161-166.

    Google Scholar

    [11] MI Yu-zhen, DENG Sheng-fu, LI Xiao-pei. Nonlinear Integral Inequalities with Delay for Discontinuous Functions and Their Applications [J]. J Inequal Appl, 2013, 430: 11.

    Google Scholar

    [12] 米玉珍, 钟吉玉.非连续函数的Bellman-Bihari型积分不等式的推广[J].四川大学学报(自然科学版), 2015, 52(1): 33-38.

    Google Scholar

    [13] MITROPOLSKIY YU A, IOVANE G, BORYSENKO S D. About a Generalization of Bellman-Bihari Type Inequalities for Discontinuous Functions and Their Applications [J]. Nonlnear Anal, 2007, 66: 2140-2165. doi: 10.1016/j.na.2006.03.006

    CrossRef Google Scholar

    [14] WANG Wu-sheng. A Generalized Retarded Gronwall-Like Inequality in Two Variables and Applications to BVP [J]. Appl Math Comput, 2007, 191(1): 144-154.

    Google Scholar

    [15] WANG Wu-sheng, LI Zi-zun. A New Class of Impulsive Integral Inequalities and Its Application [C]. 2011 International Conference on Multimedia Technology (ICMT 2011), 2011: 1897-1899.http://ieeexplore.ieee.org/document/6002439/

    Google Scholar

    [16] 严勇.一类带脉冲项的Gronwall-Bellman型积分不等式的推广及应用[J].四川师范大学学报(自然科学版), 2013, 36(4): 603-609.

    Google Scholar

    [17] ZHENG Zhao-wen, GAO Xin, SHAO Jing. Some New Generalized Retarded Inequalities for Discontinuous Functions and Their Applications [J]. J Inequal Appl, 2016(7): 14.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1099) PDF downloads(166) Cited by(0)

Access History

Other Articles By Authors

Generalization of a Class of Integral Inequalities with Gronwall-Bellman Type for Discontinuous Functions

    Corresponding author: Chang-qing LIU

Abstract: In this paper, we give the upper bound estimation of an unknown function containing three nonlinear terms of integral inequality for discontinuous functions. The result is used to estimate the upper bounds of impulsive differential equations.

  • 积分不等式是研究微分方程和积分方程的重要工具.通过对积分不等式中未知函数的估计,可以研究某些微分方程解的存在性、有界性、唯一性和稳定性等定性性质[1-17].通过对非连续函数积分不等式中未知函数进行估计,可以研究某些脉冲微分方程和解的一些性质.

    文献[3]研究了积分不等式

    文献[7]研究了下面的非连续函数积分不等式

    其中,a(t)>0,q(t)≥1,f(t)≥0,g(t)≥0,βi≥0.

    文献[16]研究了含有时滞的脉冲积分不等式

    文献[12]研究了含有未知函数的复合函数的积分不等式

    这里w(u)是定义在[0,∞)上的单调不减连续函数且当u>0时,w(u)>0.本文在上述研究成果的基础上,研究了一类含三项未知函数复合的非连续函数积分不等式

    其中,u(t)定义在是[t0,∞)上的只有第一类不连续点$\left\{ {{t}_{i}}:{{t}_{0}} < {{t}_{1}} < {{t}_{2}}\cdots, \mathop {\lim }\limits_{i \to \infty } {\mkern 1mu} {t_i}=\infty \right\} $的非负逐段连续函数,ϕ(u)是定义在[0,∞)上的正的严格单调递增函数,m>1,βi≥0,mβi是给定的常数.

1.   主要结论
  • 假设

    (H1) ϕ在[0,∞)是严格增的连续函数,对任意的u>0,ψ(u)>0;

    (H2) wi (i=1,2) 在[0,∞)上是连续不减函数,在(0,∞)上是正的,且$\frac{{{w}_{2}}}{{{w}_{1}}}$是不减的;

    (H3) a(t)是定义在[t0,∞)上的连续函数,a(t0)≠0;

    (H4) fi(ts) (i=1,2) 和f(ts),g(st)是定义在[t0,∞)×[t0,∞)上的非负连续函数;

    (H5) βi≥0是常数.

    定理1  具有第一类不连续点$\left\{ {{t}_{i}}:{{t}_{0}} < {{t}_{1}} < {{t}_{2}}\cdots, \mathop {\lim }\limits_{i \to \infty } {\mkern 1mu} {t_i}=\infty \right\}$的非负逐段连续函数u(t) (tt0≥0) 满足积分不等式(1),则函数u(t)有下面的估计式:

    其中

      令

    由于f(ts),g(ts),w(u(t))都是连续函数,得

    由(2),(4),则(1) 式变为

    首先,我们考虑情况t∈[t0t1),任取T∈[t0t1),对任意t∈[t0T],由(5) 式,可得

    v(x)为非负不减的连续函数,且

    对式(7) 求导,得

    由(9) 和(10) 式可得

    对(10) 式两边从t0t同时积分,并利用Wi(t)的定义,我们得到

    由于W1(v(t0))=W1(e1(t0)),则(11) 式可写为

    由(14) 和(15),则(13) 式变为

    v1(t)在[t0t1)是连续不减的函数,且

    定义函数

    对(18) 式的两边,从t0t积分,我们得到

    由(10),(17),(19) 式可得

    由(20) 式可得

    由(17) 式,我们可以推出

    由(22),(21) 式可变为

    由(23) 式可推出

    由(8),(14) 和(24) 式可得

    其中

    T的任意性可得

    t∈[t0t1)时我们证明了估计式.

    t∈[t1t2)时,任意确定T1∈[t1t2),对于任意的t∈[t1T1],不等式(4) 变为

    Γ(t)表示(25) 式的右边,

    Γ(t)是单调不减函数,且有

    Γ(t)的两边关于t求导得

    使(27) 式两边同时除以w1(ϕ-1(Γ(t))),可得

    又对(28) 式两边从t1t积分可得

    从而(28) 式变为了(11) 式的形式,利用相同的方法可以得到估计式

    同理,对任意自然数k,当t∈[tktk+1)时,我们可以得到未知函数的估计式

    综上定理被证明.

2.   在脉冲微分方程中的应用
  • 本节我们用得到的结果给出脉冲微分系统解的上界估计.考虑脉冲微分系统

    其中:$0\le {{t}_{0}} < {{t}_{1}} < {{t}_{2}} < \cdots, \mathop {\lim }\limits_{i \to \infty } {\mkern 1mu} {t_i}=\infty, c>1 $是常数,F(tx)关于tx在[t0,∞)×s(-∞,+∞)上连续.假设(30) 式中F(tx)满足

    其中f1(t),f2(t)是[t0,∞)上连续的非负函数.

    推论1  在条件(32) 式成立的情况下,系统(30),(31) 式所有的解x(t)满足估计式:

    其中

      脉冲微分方程(30) 与(31) 式等价于积分方程

    利用条件(32),由(34) 式,可得

    u(t)=|x(t)|,由(35) 式,我们可得不等式

    我们看出(36) 式是(5) 式的特殊形式.且(36) 式中的函数满足定理1的条件,由定理1,我们可以推出x(t)的估计式(33) 式.

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return