Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2017 Volume 39 Issue 9
Article Contents

Jia-xing ZHU, Jia-qing ZENG, Cheng-qiang DANG, et al. Leaf Litter Functional Traits and Decomposition of Woody Plants at Different Community Successional Stages in Haishi Park in Chongqing[J]. Journal of Southwest University Natural Science Edition, 2017, 39(9): 51-58. doi: 10.13718/j.cnki.xdzk.2017.09.008
Citation: Jia-xing ZHU, Jia-qing ZENG, Cheng-qiang DANG, et al. Leaf Litter Functional Traits and Decomposition of Woody Plants at Different Community Successional Stages in Haishi Park in Chongqing[J]. Journal of Southwest University Natural Science Edition, 2017, 39(9): 51-58. doi: 10.13718/j.cnki.xdzk.2017.09.008

Leaf Litter Functional Traits and Decomposition of Woody Plants at Different Community Successional Stages in Haishi Park in Chongqing

More Information
  • Corresponding author: Jian-ping TAO
  • Received Date: 17/03/2016
    Available Online: 20/09/2017
  • MSC: Q948.1

  • Leaf litter functional traits and litter decomposition rates of woody plants from three different successional stages (5-, 20-and 50-year natural recovery after anthropogenic interference) in Haishi Park limestone area in Chongqing were explored to define the variations of litter functional traits and decomposition rates in succession series at the community level and the interaction between them. The results showed that during the course of succession, community characteristics shifted from higher community specific leaf area (CSLA), community leaf nitrogen content (CLNC) and community leaf phosphorus content (CLPC) and from lower community leaf dry matter content (CLDMC) to their opposite. After decomposition for 160 days, the litter decomposition rate of the main woody plants in the 20-year secondary forest was the largest while that in the 50-year secondary forest was the lowest. Besides, there were fairly close correlations between litter decomposition and LDMC at both the species and the community levels and CLPC also showed a good prediction ability in litter decomposition at the community level. Consequently, LDMC appeared to be a powerful marker of litter decomposition at the species and the community levels, and the relationship between litter traits and decomposition at the community level can reflect the environment conditions, plant growth and the change of ecosystem processes in the community.
  • 加载中
  • [1] DIAŹ S, CABIDO M. Vive La Diference: Plant Functional Diversity Matters to Ecosystem Processes [J]. Trends in Ecology and Evolution, 2001, 16(11): 646-655. doi: 10.1016/S0169-5347(01)02283-2

    CrossRef Google Scholar

    [2] 孟婷婷, 倪健, 王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报, 2007, 31(1): 150-165.

    Google Scholar

    [3] LAVOREL S, GARNIER E. Predicting Changes in Community Composition and Ecosystem Functioning from Plant Traits: Revisiting the Holy Grail [J]. Functional Ecology, 2002, 16(5): 545-556. doi: 10.1046/j.1365-2435.2002.00664.x

    CrossRef Google Scholar

    [4] FORTUNEL C, GARNIER E, JOFFER R, et al. Leaf Traits Capture the Effects of Land Use Changes and Climate on Litter Decomposability of Grasslands across Eurpe [J]. Ecology, 2009, 90(3): 598-611. doi: 10.1890/08-0418.1

    CrossRef Google Scholar

    [5] ROBIN J P, ANTINIA E, ANDREW S. Leaf Dry Matter Content as a Predictor of Grassland Litter Decomposition: a Test of the 'Mass Ratio Hypothesis' [J]. Plant Soil, 2011, 342(1/2): 49-57.

    Google Scholar

    [6] CHAPIN Ⅲ F S, MATSON P A, MOONEY H A. Principles of Terrestrial Ecosystem Ecology [M]. New York: Springer-Verlag, 2002.

    Google Scholar

    [7] KAZAKOU E, VIOLLE C, ROUMET C, et al. Litter Quality and Decomposability of Species from a Mediterranean Succession Depend on Leaf Traits but not on Nitrogen Supply [J]. Annals of Botany, 2009, 104(6): 1151-1161. doi: 10.1093/aob/mcp202

    CrossRef Google Scholar

    [8] 宋新章, 江洪, 余树全, 等.中亚热带森林群落不同演替阶段优势种凋落物分解试验[J].应用生态学报, 2009, 20(3): 537-542.

    Google Scholar

    [9] GARNIER E, CORTEZ J, BILLES G, et al. Plant Functional Makers Capture Ecosystem Properties during Secondary Succession [J]. Ecology, 2004, 85(9): 2630-2637. doi: 10.1890/03-0799

    CrossRef Google Scholar

    [10] CORTEZ J, GARNIER E, PÉREZ-HARGUINDEGUY N, et al. Plant traits, Litter Quality and Decomposition in a Mediterranean Old-Field Succession [J]. Plant Soil, 2007, 296(1/2): 19-34.

    Google Scholar

    [11] 胡耀升, 么旭阳, 刘艳红.长白山森林不同演替阶段植物与土壤氮磷的化学计量特征[J].应用生态学报, 2014, 25(3): 632-638.

    Google Scholar

    [12] 李玉霖, 孟庆涛, 赵学勇, 等.科尔沁沙地植物成熟叶片性状与叶凋落物分解的关系[J]. 2008, 28(6): 2486-2494.

    Google Scholar

    [13] CORNWELL W K, CORNELISSEN J H C, AMATANGEL O K, et al. Plant Species Traits are the Predominant Control on Litter Decomposition Rates within Biomes Worldwide [J]. Ecology Letters, 2008, 11(10): 1065-1071. doi: 10.1111/ele.2008.11.issue-10

    CrossRef Google Scholar

    [14] 陈法霖, 郑华, 阳柏苏, 等.中亚热带几种针阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响[J].生态学报, 2011, 31(11): 3027-3035.

    Google Scholar

    [15] LUMMER D, SCHEU S, BUTENSCHOEN O. Connecting Litter Quality, Microbial Community and Nitrogen Transfer Mechanisms in Decomposing Litter Mixtures [J]. Oikos, 2012, 12(10): 1649-1645.

    Google Scholar

    [16] 李宜浓, 周晓梅, 张乃莉, 等.陆地生态系统混合凋落物分解研究进展[J].生态学报, 2016, 36(16): 1-11.

    Google Scholar

    [17] 范文武, 陈晓德, 李加海, 等.重庆中梁山海石公园石灰岩山地植物多样性研究[J].西南大学学报(自然科学版), 2009, 31(5): 106-110.

    Google Scholar

    [18] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A Handbook of Protocols for Standardised and Easy Measurement of Plant Functional Traits Worldwide [J]. Australian Journal of Botany, 2003, 51(4): 335-380. doi: 10.1071/BT02124

    CrossRef Google Scholar

    [19] KAZAKOU E, VILE D, SHIPLEY B, et al. Co-Variations in Litter Decomposition, Leaf Traits and Plant Growth in Species from a Mediterranean Old-Field Succession [J]. Functional Ecology, 2006, 20(1): 21-30. doi: 10.1111/fec.2006.20.issue-1

    CrossRef Google Scholar

    [20] OLSON J S. Energy Storage and the Balance of Producers and Decomposition in Ecological System [J]. Ecology, 1963, 44(2): 322-331. doi: 10.2307/1932179

    CrossRef Google Scholar

    [21] WILSON P J, THOMPSON K, HODGSON J G. Specific Leaf Area and Leaf Dry Matter Content as Alternative Predictors of Plant Strategies [J]. New Phytologist, 1999, 143(1): 155-162. doi: 10.1046/j.1469-8137.1999.00427.x

    CrossRef Google Scholar

    [22] ACKERLY D D, KNIGHT C A, WEISS S B. Leaf size, Specific Leaf Area and Microhabitat Distribution of Chaparral Plants: Contrasting Patterns in Species Level and Community Level Analyses [J]. Oecologla, 2002, 130(3): 449-457. doi: 10.1007/s004420100805

    CrossRef Google Scholar

    [23] CREWS T E, KITAYAMA K, FOWDES J H, et al. Changes in Soil Phosphorus Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii [J]. Ecology, 1995, 76(5): 1407-1424. doi: 10.2307/1938144

    CrossRef Google Scholar

    [24] BAKKER M A, CARRENO-ROCABADO G, POORTER L. Leaf Economics Traits Predict Litter Decomposition of Tropical Plants and Differ among Land Use Types [J]. Functional Ecology, 2011, 25(3): 473-483. doi: 10.1111/fec.2011.25.issue-3

    CrossRef Google Scholar

    [25] QUESTED H, ERIKXXON O, FORTUNEL C, et al. Plant Traits Relate to Whole-Community Litter Quality and Decomposition Following Land Use Change [J]. Functional Ecology, 2007, 21(6): 1016-1026. doi: 10.1111/fec.2007.21.issue-6

    CrossRef Google Scholar

    [26] GARNIER E, LAURENT G. Leaf Anatomy, Specific Mass and Water Content in Congeneric Annual and Perennial Grass Species [J]. New Phytologist, 1994, 128(4): 725-736. doi: 10.1111/nph.1994.128.issue-4

    CrossRef Google Scholar

    [27] AERTS R. Climate, Leaf Litter Chemistry and Litter Decomposition in Terrestrial Ecosystems: a Triangular Relationship [J]. Oikos, 1997, 79(3): 439-449. doi: 10.2307/3546886

    CrossRef Google Scholar

    [28] HOBBIE S E, VITOUSEK P M. Nutrient Limitation of Decomposition in Hawaiian Forests [J]. Ecology, 2000, 81(7): 1867-1877. doi: 10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2

    CrossRef Google Scholar

    [29] WIEDER W R, CLEVELAND C C, TOWNSEND A R. Controls Over Leaf Litter Decomposition in Wet Tropical Forests [J]. Ecology, 2009, 90(12): 3333-3341. doi: 10.1890/08-2294.1

    CrossRef Google Scholar

    [30] 罗绪强, 张桂玲, 杜雪莲, 等.茂兰喀斯特森林常见钙生植物叶片元素含量及其化学计量学特征[J].生态环境学报, 2014, 23(7): 1121-1129.

    Google Scholar

    [31] 杨慧, 李青芳, 涂春艳, 等.桂林毛村岩溶区典型植物叶片碳、氮、磷化学计量特征[J].广西植物, 2015, 35(4): 493-499. doi: 10.11931/guihaia.gxzw201502026

    CrossRef Google Scholar

    [32] HAN Wen-xuan, FANG Jing-yun, GUO Da-li, et al. Leaf Nitrogen and Phosphorus Stoichiometry Across 753 Terrestrial Plant Species in China [J]. New Phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  /  Tables(5)

Article Metrics

Article views(849) PDF downloads(257) Cited by(0)

Access History

Leaf Litter Functional Traits and Decomposition of Woody Plants at Different Community Successional Stages in Haishi Park in Chongqing

    Corresponding author: Jian-ping TAO

Abstract: Leaf litter functional traits and litter decomposition rates of woody plants from three different successional stages (5-, 20-and 50-year natural recovery after anthropogenic interference) in Haishi Park limestone area in Chongqing were explored to define the variations of litter functional traits and decomposition rates in succession series at the community level and the interaction between them. The results showed that during the course of succession, community characteristics shifted from higher community specific leaf area (CSLA), community leaf nitrogen content (CLNC) and community leaf phosphorus content (CLPC) and from lower community leaf dry matter content (CLDMC) to their opposite. After decomposition for 160 days, the litter decomposition rate of the main woody plants in the 20-year secondary forest was the largest while that in the 50-year secondary forest was the lowest. Besides, there were fairly close correlations between litter decomposition and LDMC at both the species and the community levels and CLPC also showed a good prediction ability in litter decomposition at the community level. Consequently, LDMC appeared to be a powerful marker of litter decomposition at the species and the community levels, and the relationship between litter traits and decomposition at the community level can reflect the environment conditions, plant growth and the change of ecosystem processes in the community.

  • 植物功能性状是指能够响应生存环境的变化并/或对生态系统功能有一定影响的植物性状[1],它强调与生态系统过程和功能的关系[2],可以直接预测生态系统发展过程中植物群落和生态系统功能的变化[3-5],也为联系环境因子与物种特性提供了方法支撑[4],研究植物功能性状在群落间的变化有助于理解演替过程中群落结构变化及对生态系统过程的影响.

    凋落物分解是陆地生态系统中养分循环的关键环节[6-7],凋落物分解快慢决定着土壤养分供应能力的大小,进而影响植被演替的进程[8].在不同演替阶段,由于植被组成和土壤条件不同,叶片功能性状随之发生改变[9-11].植物群落有效性状通过凋落叶基质质量与群落凋落叶分解速率紧密联系[10],进而影响凋落物分解及养分循环.目前相关研究多重视物种水平上凋落叶功能性状与分解的关系[12-13],也有相当多的工作关注凋落物混合分解过程[14-16],但这些工作还不足以解释群落内随着物种组成及多度变化的情况下群落水平上凋落物的分解过程.特别是在我国的西南石灰岩石漠化地区,由于生产和开发导致的群落稳定性问题十分突出,其中凋落物及分解过程对于水土保持、土壤肥力维持和生态系统内物质的生物小循环起着十分关键的作用.在特殊的石灰岩石漠化地区开展群落水平上的功能性状及与凋落物分解的相关研究,有助于我们从功能生态学的角度进一步认识石灰岩地区植被的演替过程,对于将功能性状的研究方法用于特殊生境群落水平上的凋落物分解探索也是一次新的、有益的尝试.

    基于以上目的,本文以重庆市中梁山石漠化地区的灌草群落为对象,调查了人为干扰后自然恢复演替约5 a,20 a和50 a的灌草群落基本特征,对不同演替阶段群落主要木本植物叶片的功能性状及凋落叶分解进行了研究,重点探讨:① 群落水平上凋落叶功能性状随演替进程的变化趋势及其与群落演替的关联;② 凋落叶在群落水平上随演替进程的分解规律;③ 个体水平和群落水平凋落叶功能性状对其分解的预测效果.

1.   研究地区与研究方法
  • 研究区位于重庆市沙坪坝区中梁山北段海石公园内(29°39′-30°03′ N,106°18′-106°56′ E),是典型的喀斯特地貌,属中亚热带湿润季风气候.年均温18 ℃,海拔500~700 m,年均降水量为1 000~1 300 mm,夏季高温多雨,冬暖多雾.土壤为石灰岩上发育的山地黄壤和山地黄棕壤,由于人为干扰,在20世纪50年代末-60年代初,大量森林被砍伐殆尽,园内岩石大量裸露,土层浅薄,土被不连续,土壤富钙偏碱性,植物生长缓慢,植被覆盖率低.目前公园内主要植被是以南天竹Nandina domestica、火棘Pyracantha fortuneana、盐肤木Rhus chinensis、芒Miscanthus sinensis等为优势种的次生灌草群落[17].

  • 于2014年7月在海石公园内选取人为干扰后恢复程度不同的3个典型演替阶段,即恢复5a,20 a和50 a的群落为样地(表 1),其中50 a演替阶段取10 m×20 m的样方3个,20 a和5 a取10 m×10 m的样方各3个,将大样方划分成5 m×5 m的小样方,按常规群落学野外调查方法,进行主要木本植物物种密度、盖度和频度的调查.

  • 依据群落调查结果,于2014年9-11月在海石公园内采集各演替阶段主要木本物种(表 2,共16个物种)的凋落叶,置于实验室内自然风干.材料的采集及储存方法参照文献[18].

  • 每物种选取10个重复(无病虫害,生理状态相似的叶片),分别测定叶干物质含量(LDMC)、比叶面积(SLA)和物理强度(LT)[18].将各物种的风干叶片用球磨仪粉碎后进行叶片元素的测定.叶片全碳(LCC)和全氮含量(LNC)利用Elementar德国CHNS-O元素分析仪测定,全磷含量(LPC)采用钼锑抗比色法测定.

  • 用分解袋法进行凋落物分解实验.凋落物袋大小为10 cm×15 cm,网孔大小为1 mm×1 mm,每个分解袋内放入3 g风干样品,并订好标签.于2014年12月30日放入海石公园内条件相似的3块较平坦样地,每个样地内每物种放置3袋,于2015年6月收获带回实验室处理(共分解160 d).另外,每物种留出3份样品烘干以测量初始凋落叶的含水率.带回实验室的样品用清水快速冲洗,小心去除根和泥沙等杂物,在80 ℃下烘干至恒质量,并称量.

  • 式中,IV为重要值;RD为相对密度;RF为相对频度;RC为相对盖度.

  • 根据各演替阶段主要木本植物的重要值,对其相应的功能性状和分解速率予以加权赋值[9, 19],从而计算出各演替阶段主要木本植物功能性状加权值(群落植物特征的加权平均数Community Weighted-Means)为

    其中,pi指该群落中第i个物种在该群落中的相对贡献率(本研究中选取重要值作为加权指标),traiti为种的特征值,S为群落中物种数.文中经过重要值加权的性状均以Ctrait表示.

  • 采用Olson[20]指数模型计算凋落物分解速率

    式中:Xt为分解时间t时的干质量;X0为凋落物的初始干质量;k为凋落物的年分解速率.

  • 通过重要值对功能性状加权得到群落水平相对应的功能性状值,对不同演替阶段的群落功能性状和凋落叶分解速率进行one-way ANOVA分析,并运用最小显著差异法(LSD)进行多重比较;对不同演替阶段的群落功能性状、物种水平和群落水平上凋落叶功能性状与分解速率的关系进行Spearman相关性分析.采用SPSS19.0统计软件对数据进行统计分析(统计显著水平均为p=0.05),使用Origin8.6作图.

2.   结果分析
  • 在群落演替过程中,黄荆Vitex negundo在5 a恢复群落和20 a恢复群落中所占比例都较大,在5 a恢复群落中黄荆多为当年生或近2年生,密度大而盖度小,在群落中占较大比例,而50 a恢复群落中黄荆的萌生株数减少而实生株数增大,多为多年生植株,密度小而盖度大,重要值大幅降低.铁仔Myrsine Africana在20 a恢复群落中重要值最大,5 a恢复群落中最小,其在以草本层为优势层向以灌木层为优势层的演替发展中发挥着重要作用.山麻杆Alchornea davidii和红泡刺藤Rubus niveus属于先锋树种,在5 a恢复群落中大量存在,之后随着演替进行大幅减少.金山荚蒾Viburnum chinshanense在5 a恢复群落没有出现,但在20 a恢复群落中大量出现,到50 a恢复群落中却只出现几株,是典型的群落更替中物种更替的代表.藤刺灌木金樱子Rosa laevigata在50 a恢复群落中重要值大幅度增加(表 2).

  • 随着演替的进行,20 a恢复群落的CLTCLCC均高于50 a和5 a恢复群落,各阶段之间差异均具有统计学意义(p<0.05),但总体呈增加趋势;CLDMCCC/N随着演替的进行而增加,CSLACLNC则呈现相反的趋势;50 a恢复群落的CLPC显著小于20 a和5 a,且20 a和5 a的CLPC差异不具有统计学意义;与CLPC的变化趋势相反,50 a恢复群落的CN/P最大,20 a和5 a的CN/P较低且没有显著变化(表 3).随着演替的进行,群落由高CSLACLNCCLPC和低CLDMC向低CSLACLNCCLPC和高CLDMC转变.

    通过Spearman相关性分析(表 4),CLNCCSLA与不同演替阶段均表现出极显著的负相关,而CLDMCCC/N与不同演替阶段呈现出极显著的正相关,与CLPC呈显著负相关.结合表 3CLNCCLDMCCC/NCSLA随着演替的进行表现出明显的规律性变化.随着群落的不断发展,CLNCCLDMCCC/NCSLA能较好地体现不同演替阶段的差异.

  • 随着演替发展,各演替阶段凋落叶分解状况不同.在分解160 d后,50 a恢复群落的分解速率最小,分解最慢,20 a恢复群落的分解速率最大,分解最快,且50 a恢复群落的凋落叶分解速率较20 a恢复群落显著降低(图 1).总体来说,随演替进行,群落凋落叶分解有变慢的趋势.

  • Spearman相关性分析显示,在群落水平上与凋落叶的分解速率(CK)显著相关的性状从大到小依次为CLPCCLDMCCLNC=CC/N,其中CK分别与CLPCCLDMC呈极显著的正相关和极显著的负相关. LDMC在物种水平和群落水平上均对分解有着重要的指示作用(表 5).

3.   讨论
  • 群落在演替的过程中,不同物种在不同演替阶段的地位(重要值)不同,导致不同群落各功能指标的群落加权平均数也会不同. SLA可以反映植物对碳的获取和平衡的关系[21]LDMC主要反映的是植物对养分元素的保有能力[22],二者与植物的相对生长速率和资源利用有密切的关系.这说明随着演替的不断发展,群落植被由迅速获取资源型(高CSLACLNC和低CLDMC)转变为保持体内养分能力较强型(低CSLACLNC和高CLDMC),对光及土壤养分的利用效率增强,进一步促进演替. 50 a恢复群落的CLPC明显低于5 a恢复群落和20 a恢复群落,这可能是由于在土壤发育过程中,风化侵蚀使土壤中原生矿物逐渐消失,土壤中的磷酸盐从非闭蓄态的有机矿物形式转变为闭蓄态和有机结合的形式,难以利用[23],可被植物吸收的有效磷越来越有限,导致植物体各器官的含磷量逐渐降低[11].

  • 在演替过程中,由于先锋树种具有养分迅速获得的生态策略,分解较快.以先锋物种为优势种的群落通过这种策略推动群落发展为更先进的演替阶段,即干扰越强的群落,其生态策略更趋向于养分快速循环型,分解较快;随着群落的恢复,其生态策略逐渐转为养分保守型,分解变慢[24].本研究中随着演替的进行,主要木本植物凋落叶分解速率呈现出先上升后下降的趋势,这可能是由于本研究在采集用于分解的凋落叶时有部分物种已经落叶,如在5 a恢复群落中占重要地位的红泡刺藤Rubus niveus;另外,5 a恢复群落临近路边,人为干扰频繁,植被生长受到较大影响,强烈干扰着群落中物种种类及数量组成等,最终导致其分解速率并没有20 a恢复群落快.但50 a恢复群落的分解速率低于5 a恢复群落和20 a恢复群落,即演替过程中主要木本植物凋落叶分解速率呈降低趋势,群落向养分保守型转变.

    Kazakou等[18]发现植物的有效功能性状可以影响物种潜在的“后生命效应”对生态系统特性的影响.本研究中物种水平上LDMC与凋落叶分解的关系呈现出显著的负相关关系,SLAC/N次之,这与之前的很多研究结果相似,LDMC是凋落叶化学组成及其分解最好的预测者[4-5, 7, 10, 25]. LDMC与土壤有机质相关,也可以反应叶片的叶肉组织与厚壁维管组织的比例[26],并与凋落叶的半纤维素含量有关[10].从群落水平来看,植物功能性状的群落加权平均数与群落的分解能力有很好的相关性,且随着演替的进行,高SLALNC和低LDMC的物种逐渐被低SLALNC和高LDMC的物种取代,分解速率也会呈现出变慢的趋势[10, 25].在群落水平上,CLPCCLDMC与凋落叶分解的关系最紧密. CLPC的突出作用可能是由于在石灰岩地区这种特殊生境中相比N来看,P的可利用性更低,限制作用更强[27-31],从而影响凋落物分解过程中酶和微生物等的作用,这使CLPC对分解的影响比CLNC更大.另外,我国P含量的平均水平明显低于全球,而本研究中20 a恢复群落和50 a恢复群落的P含量和N/P均低于全国灌木平均水平(P=1.11 mg/g,N/P=14.7)[32],这说明本研究点主要木本植物P含量受到很大的制约,尤其是在演替后期阶段.

    在本研究中,LDMC对凋落物分解有较好的预测作用,在物种水平和群落水平上达到了一致性.如果该结论被大量群落研究证实,我们可以通过简单、易测量的有限物种的相关性状来预测物种非常丰富的群落的生态系统特性,获得生态系统功能方面的重要信息,并描述和预测从物种水平上升到生态系统的物质循环.群落水平上LDMC的变化可以较好地反映群落演替过程中植被生态对策的转变,且与群落水平上凋落叶分解关系密切,能较好地反映群落演替过程中其生境状况、植被生长情况及生态系统过程的变化.

Figure (1)  Table (5) Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return