Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2017 Volume 39 Issue 11
Article Contents

Kai-ting WEN. A GR-KKM Theorem in GFC-Metric Spaces and Its Application to Coincidence Problems[J]. Journal of Southwest University Natural Science Edition, 2017, 39(11): 59-63. doi: 10.13718/j.cnki.xdzk.2017.11.009
Citation: Kai-ting WEN. A GR-KKM Theorem in GFC-Metric Spaces and Its Application to Coincidence Problems[J]. Journal of Southwest University Natural Science Edition, 2017, 39(11): 59-63. doi: 10.13718/j.cnki.xdzk.2017.11.009

A GR-KKM Theorem in GFC-Metric Spaces and Its Application to Coincidence Problems

More Information
  • Received Date: 08/07/2016
    Available Online: 20/11/2017
  • MSC: O177.91

  • In this paper, the GFC-metric space is introduced and a GR-KKM theorem in it is established. As applications, in noncompact settings, we obtain that maximal element sets, solution sets of variational inequalities and coincidence sets in GFC-metric spaces are nonempty and compact.
  • 加载中
  • [1] ARONSZAJN N, PANITCHPAKDI P. Extension of Uniformly Continuous Transformation and Hyperconvex Metric Space[J]. Pacific J Math, 1956, 6: 405-439. doi: 10.2140/pjm

    CrossRef Google Scholar

    [2] KHAMSI M A. KKM and Ky Fan Theorems in Hyperconvex Metric Spaces[J]. J Math Anal Appl, 1996, 204: 298-306. doi: 10.1006/jmaa.1996.0438

    CrossRef Google Scholar

    [3] KIRK W A, SIMS B, YUAN X Z. The Knaster-Kuratowski and Mazurkiewicz Theory in Hyperconvex Metric Spacesand some of Its Applications[J]. Nonlinear Anal, 2000, 39: 611-627. doi: 10.1016/S0362-546X(98)00225-9

    CrossRef Google Scholar

    [4] DING XIE-PING, XIA FU-QUAN. Generalized H-KKM Type Theorems in H-Metric Spaces with Application[J]. Appl Math Mech (English Edition), 2001, 22(10): 1140-1148.

    Google Scholar

    [5] 孟莉, 沈自飞, 程小力. G-凸度量空间中的KKM定理及其应用[J].应用泛函分析学报, 2005, 7(3): 273-279.

    Google Scholar

    [6] WEN Kai-ting. A Ky Fan Matching Theorem in Complete L-Convex Metric Spaces and Its Application to Abstract Economies[J]. Math Appl, 2007, 20(3): 593-597.

    Google Scholar

    [7] 文开庭. FC-度量空间中的R-KKM定理及其对抽象经济的应用[J].西南师范大学学报(自然科学版), 2010, 35(1): 45-49.

    Google Scholar

    [8] KHANH P Q, QUAN N H, YAO J C. Generalized KKM-type Theorems in GFC-Spaces and Applications[J]. NonlinearAnal, 2009, 71(3-4): 1227-1234.

    Google Scholar

    [9] WEN Kaiting. A GFs-KKM Theorem in GFC-Spaces and the Application to Coincidence Problems[J]. Math Appl, 2015, 28(3): 533-539.

    Google Scholar

    [10] WEN Kai-ting. A GLKKM Type Theorem for Noncompact Complete L-convex Metric Spaces with Applications to Variational Inequalities and Fixed Points[J]. J Math Res Exposition, 2009, 29(1): 19-27.

    Google Scholar

    [11] DING Xie-ping. Generalized L-KKM Type Theorems in L-Convex Spaces with Applications[J]. Computers Math Appl, 2002, 43: 1249-1256. doi: 10.1016/S0898-1221(02)00096-2

    CrossRef Google Scholar

    [12] 文开庭. FC-度量空间中的R-KKM定理及其对变分不等式和不动点的应用[J].应用泛函分析学报, 2010, 12(3): 266-273.

    Google Scholar

    [13] WEN Kai-ting. GLKKM Theorems in L-Convex Metric Spaces with Application[J]. Acta Anal FunctAppl, 2008, 10(2): 109-115.

    Google Scholar

    [14] 刘学文.完备H-度量空间中非紧型KKM定理的应用[J].西南师范大学学报(自然科学版), 2003, 28(2): 159-161.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(956) PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

A GR-KKM Theorem in GFC-Metric Spaces and Its Application to Coincidence Problems

Abstract: In this paper, the GFC-metric space is introduced and a GR-KKM theorem in it is established. As applications, in noncompact settings, we obtain that maximal element sets, solution sets of variational inequalities and coincidence sets in GFC-metric spaces are nonempty and compact.

  • 1956年,文献[1]引入了超凸度量空间. 1996年,文献[2]建立了超凸度量空间中的FKKM映射原理. 2000年,文献[3]研究了超凸度量空间中的GMKKM映射原理. 2001年,文献[4]引入了H-度量空间. 2005年,文献[5]引入了G-凸度量空间. 2007年,文献[6]引入了L-凸度量空间. 2010年,文献[7]引入了FC-度量空间.本文的目的是在GFC-空间[8-9]的框架下,引入GFC-度量空间.

    本文沿用文献[2-9]的相关记号、概念和术语,并引入如下概念:

    定义1  设(XYΦ)为GFC-空间. FY→2X称为GR-KKM映射,若对∀{y0,…,yn}∈〈Y〉,存在

    使得对

    注1  定义1统一推广了文献[2-9]的KKM映射、HKKM映射、FKKM映射、GMKKM映射、GLKKM映射、R-KKM映射等概念.

    定义2  设(XYΦ)为GFC-空间,γ∈ℝ为实数.泛函fX×Y:=ℝ∪{±∞}称为关于y广义γ-GR-对角拟凹(或凸)的,如果对∀{y0,…,yn}∈〈Y〉,存在N:={x0,…,xn}∈〈X〉,使得对∀{xi0,…,xik}∈〈N〉和∀xφNk),有$\mathop {\min }\limits_{0 \le j \le k} $f(xyij)≤γ(相应地$\mathop {\max }\limits_{0 \le j \le k} $f(xyij)≥γ).

    注2  定义2统一推广了文献[4]的广义γ-H-对角拟凹(或凸)、文献[10-11]的广义γ-L-对角拟凹(或凸)的定义以及文献[12]的定义2.2.

    显然,我们有如下引理:

    引理1  设(XYΦ)为GFC-空间,γ∈ℝ为实数,fX×Y为泛函,FY→2X定义为:F(y):={xXf(xy)≤γ}(相应地,F(y):={xXf(xy)≥γ}),∀ yY.则泛函f是关于y广义γ-GR-对角拟凹(或凸)的当且仅当F是GR-KKM映射.

    注3  引理1统一推广了文献[3]的引理2.7、文献[4]的引理4.1、文献[10]的引理1.1以及文献[12]的引理2.1.

    定义3  设(Xd)为度量空间,(XYΦ)为GFC-空间. (XYΦd)称为GFC-度量空间,若对∀{y0,…,yn}∈〈Y〉,存在N:={x0,…,xn}∈〈X〉,使得φNn)⊂co(N).设(XYΦd)为GFC-度量空间且(Xd)完备,则称(XYΦd)为完备GFC-度量空间.

    注4   1)显然,GFC-度量空间包含了文献[7, 12]的FC-度量空间,因而,也包含了文献[1-3]的超凸度量空间、文献[4]的H-度量空间、文献[5]的G-凸度量空间和文献[6, 10-11]的L-凸度量空间作为特例.

    2) 由定义3可知,设(XYΦd)为GFC-度量空间,则对任意取定的xXφ{x}(e0)=x.

    定理1  设(XYΦd)为GFC-度量空间,FY→2X是有限度量紧闭值集值映射.则族{F(y)}yY有有限交性质当且仅当F是GR-KKM映射.

      若{F(y)}yY有有限交性质,则对∀{y0,…,yn}∈〈Y〉,$\bigcap\limits_{i = 0}^n {F\left( {{y_i}} \right) = \emptyset } $.取${x^*} \in \bigcap\limits_{i = 0}^n {F\left( {{y_i}} \right)} $,令xi=x*i∈{0,…,n},N:={x0,…,xn}∈〈X〉,则对∀{xi0,…,xik}∈〈N〉,{xi0,…,xik}={x*}.据注4,

    F是GR-KKM映射.

    反之,若F是GR-KKM映射,则对∀{y0,…,yn}∈〈Y〉,存在N:={x0,…,xn}∈〈X〉,使得对∀{xi0,…,xik}∈〈N〉,有

    又因(XYΦd)称为GFC-度量空间,故

    因此,

    从而,

    F是有限度量紧闭值的,故对∀j=0,…,k,co(N)∩F(yij)是紧闭集.因φN连续,故φNn)是紧集,于是φNn)∩co(N)F(yi)是φNn)中的闭集.据φN连续性,φN-1(φNn)∩co(N)∩F(yij))是Δn中的闭集.据传统的KKM定理,

    因此,

    所以,族{F(y)}yY有有限交性质.

    注5  定理1统一改进和推广了文献[2]的定理3、文献[3]的定理2.1、文献[4]的定理2.1、文献[5]的定理2.1、文献[6]的引理1、文献[7]的定理1、文献[12]的定理3.1和文献[13]的定理2.1.

    定理2  设(XYΦd)为完备GFC-度量空间,FX→2Y为集值映射,且F-1是转移紧开值的,F*Y→2X定义为F*(y):=X\F-1(y),yY是GR-KKM映射,

    则{xXF(x)=Ø}是非空紧集.

      定义clF*Y→2X为clF*(y):=clXF*(y),∀yY,则clF*是闭值的,从而是有限度量紧闭值的.因F*是GR-KKM映射,故clF*是GR-KKM映射.据定理1,{clF*(y)}yY有有限交性质.因(XYΦd)为完备GFC-度量空间,故X完备.注意到

    据文献[3]的引理4.1,$\;\bigcap\limits_{y \in Y} {{\rm{cl}}{F^*}\left( y \right)} $是非空紧集.

    现定义$\hat{F} :Y\to {{2}^{X}}$

    F-1是转移紧开值的,故F*是转移紧闭值的.注意到$\bigcap\limits_{z \in Y} {{\rm{cl}}{F^*}\left( z \right)} $是非空紧集,故$\hat F$是转移闭值的.据文献[3]的引理2.4,

    于是,

    所以,{xXF(x)=Ø}是非空紧集.

    注6  定理2统一改进和推广了文献[2]的定理4、文献[3]的推论2.6、文献[7]的定理2、文献[10]的定理2.1和文献[12]的定理3.2.

    定理3  设(XYΦd)为完备GFC-度量空间,γ∈ℝ为实数.泛函fX×Y关于y是广义γ-GR-对角拟凹的,关于xγ-转移紧下半连续的,且

    则{xXf(xy)≤γ,∀yY}是非空紧集.

      定义FX→2Y

    则对∀yY

    f(xy)关于xγ-转移紧下半连续的,据文献[12]的引理2.2,F*是转移紧闭值的,因此, F-1是转移紧开值的.因f(xy)关于y是广义γ-GR-对角拟凹的,据引理1,F*是GR-KKM映射.注意到

    故据定理2,{xXf(xy)≤γ,∀yY}={xXF(x)=Ø}是非空紧集.

    注7  定理3改进和推广了文献[3]的定理2.8、文献[4]的定理4.1、文献[10]的定理2.2、文献[12]的定理3.3和文献[14]的定理4.

    定理4  设(XYΦd)为完备GFC-度量空间,fXY为单值映射,FX→2Y为集值映射,GY→2X定义为G(y):={xXf(x)∈F(x)},∀yY是转移紧闭值的GR-KKM映射且

    则{xXf(x)∈F(x)}是非空紧集.

      定义泛函gX×Y为:

    G是转移紧闭值的,据文献[12]的引理2.2,g(xy)关于x是0-转移紧下半连续的.因G是GR-KKM映射,据引理1,g(xy)关于y是广义0-GR-对角拟凹的.又因

    据定理3,{xXf(x)∈F(x)}={xXg(xy)≤0,∀yY}是非空紧集.

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return