Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2017 Volume 39 Issue 12
Article Contents

Pan ZHOU, Jiang ZHOU. A New Endpoint Estimate for Multilinear Fractional Integral Operators on Morrey Type Spaces[J]. Journal of Southwest University Natural Science Edition, 2017, 39(12): 74-80. doi: 10.13718/j.cnki.xdzk.2017.12.011
Citation: Pan ZHOU, Jiang ZHOU. A New Endpoint Estimate for Multilinear Fractional Integral Operators on Morrey Type Spaces[J]. Journal of Southwest University Natural Science Edition, 2017, 39(12): 74-80. doi: 10.13718/j.cnki.xdzk.2017.12.011

A New Endpoint Estimate for Multilinear Fractional Integral Operators on Morrey Type Spaces

More Information
  • Corresponding author: Jiang ZHOU
  • Received Date: 21/04/2017
    Available Online: 20/12/2017
  • MSC: O174.2

  • Endpoint estimates for the multilinear fractional integral operator Iα, m on Morrey type spaces are discussed. Using the methods of analysis, such as Hölder inequality and the method of dividing ring, the authors prove that operator Iα, m is bounded from $\mathscr{M}$pp0 spaces to BMO spaces and from $\mathscr{M}$pp0 spaces to ${\rm{Li}}{{\rm{p}}_{\alpha - \frac{n}{{{p_{_0}}}}}}$ spaces.
  • 加载中
  • [1] MORREY C. On the Solutions of Quasi-Linear Elliptic Partial Differential Equations [J]. Transactions of the American Mathematical Society, 1938, 43(1): 126-166. doi: 10.1090/S0002-9947-1938-1501936-8

    CrossRef Google Scholar

    [2] TAYLOR M. Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations [J]. Communications in Partial Differential Equations, 1992, 17(9-10): 1407-1456. doi: 10.1080/03605309208820892

    CrossRef Google Scholar

    [3] OLSEN P. Fractional Integration, Morrey Spaces and a Schrödinger Equation [J]. Communications Partial Differential Equations, 1995, 20(11-12): 2005-2055. doi: 10.1080/03605309508821161

    CrossRef Google Scholar

    [4] KUKAVICA I. Regularity for the Navier-Stokes Equations with a Solution in a Morrey Space [J]. Indiana University Mathematics Journal, 2008, 57(6): 2843-2860. doi: 10.1512/iumj.2008.57.3628

    CrossRef Google Scholar

    [5] ADAMS D. A Note on Riesz Potentials [J]. Duke Mathematical Journal, 1975, 42(4): 765-778. doi: 10.1215/S0012-7094-75-04265-9

    CrossRef Google Scholar

    [6] CHIARENZA F, FRASCA M. Morrey Spaces and Hardy-Littlewood Maximal Functions [J]. Rend Mat Applizioni, 1987, 7(31): 273-279.

    Google Scholar

    [7] DING Y. A Characterization of BMO Via Commutators for Some Operators [J]. Northeastern Mathematical Journal, 1997, 13(4): 422-432.

    Google Scholar

    [8] GILLES P, RIEUSSET L G. Multipliers and Morrey Spaces [J]. Potential Analysis, 2013, 38(3): 741-752. doi: 10.1007/s11118-012-9295-8

    CrossRef Google Scholar

    [9] COIFMAN R R, MEYER Y. On Commutators of Singular Integrals and Bilinear Singular Integrals [J]. Transactions of the American Mathematical Society, 1975, 212(OCT): 315-331.

    Google Scholar

    [10] GRAFAKOS L, TORRES R. Multilinear Calderón-Zygmund Theory [J]. Advances in Mathemtics, 2002, 165(1): 124-164. doi: 10.1006/aima.2001.2028

    CrossRef Google Scholar

    [11] GRAFAKOS L. On Multilinear Fractional Integrals [J]. Studia Mathematical, 1992, 102(1): 49-56. doi: 10.4064/sm-102-1-49-56

    CrossRef Google Scholar

    [12] KENIG C E, STEIN E M. Multilinear Estimates and Fractional Integration [J]. Mathematial Research Leterst, 1999, 6(1): 1-15.

    Google Scholar

    [13] GRAFAKOS L, KALTON N. Some Remarks on Multilinear Maps and Interpolation [J]. Mathematische Annalen, 2001, 319(1): 151-180. doi: 10.1007/PL00004426

    CrossRef Google Scholar

    [14] TANG L. Endpoint Estimates for Multilinear Fractional Integrals [J]. Journal of the Australian Mathematical Society, 2008, 84(3): 419-429.

    Google Scholar

    [15] IIDA T, SATO E, SAWANO Y et al. Sharp Bouds for Multilinear Fractional Integral Operators on Morrey Type Spaces [J]. Positivity, 2012, 16(2): 339-358. doi: 10.1007/s11117-011-0129-5

    CrossRef Google Scholar

    [16] JOHN F, NIRENBERG L. On Functions of Bounded Mean Oscillation [J]. Communications on Pure Applied Mathematics, 1961, 14(3): 415-426. doi: 10.1002/(ISSN)1097-0312

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1077) PDF downloads(137) Cited by(0)

Access History

Other Articles By Authors

A New Endpoint Estimate for Multilinear Fractional Integral Operators on Morrey Type Spaces

    Corresponding author: Jiang ZHOU

Abstract: Endpoint estimates for the multilinear fractional integral operator Iα, m on Morrey type spaces are discussed. Using the methods of analysis, such as Hölder inequality and the method of dividing ring, the authors prove that operator Iα, m is bounded from $\mathscr{M}$pp0 spaces to BMO spaces and from $\mathscr{M}$pp0 spaces to ${\rm{Li}}{{\rm{p}}_{\alpha - \frac{n}{{{p_{_0}}}}}}$ spaces.

  • 设1≤qp<∞.如果一个函数fLlocq且满足

    则称其属于Morrey空间Mqp,其中B表示${\mathbb{R}^n}$中的一个开球.

    众所周知,Morrey空间是文献[1]为了研究二阶椭圆型偏微分方程的解的局部性质而引入的.作为一个有用的工具,它在调和分析和偏微分方程中都扮演着重要角色[2-4].近几十年来,文献[5-8]对Morrey型空间进行了研究.例如,文献[5]研究了分数次积分算子在Morrey空间上的性质,得到了Hardy-Littlewood-Sobolev定理;文献[6-8]研究了Hardy-Littlewood极大算子、分数次极大算子、分数次积分算子交换子以及乘子在Morrey型空间上的有界性.

    20世纪70年代以来,多线性算子的理论受到了许多学者的关注:文献[9]研究了多线性的Calderón-Zygmund理论;文献[10]系统地完善了多线性的Calderón-Zygmund理论;文献[11-13]研究了多线性的分数次积分算子理论.这些理论在调和分析领域得到了广泛的应用.设0<αmn$m \in {\mathbb{N}^*}$,Adams型[5]多线性分数次积分算子Iαm被定义为

    其中$x \in {\mathbb{R}^n}$f=(f1,…,fm).

    显然,多线性分数次积分算子Iαm是经典的分数次积分算子Iα的推广.文献[14]证明了多线性分数次积分算子Iαm在Morrey空间上的有界性,得到如下结果:

    $m \in {\mathbb{N}^*}$,0<αmn,1<qipi≤∞,i=0,1,…,m.如果

    则存在正常数C,使得

    其中f=(f1f2,…,fm).

    文献[15]介绍了多Morrey空间的定义,并且证明了多Morrey范数比m重Morrey范数的乘积要严格的小,也证明了多线性分数次积分算子在Morrey空间上的有界性,得到的结果比文献[14]中的结果更精确:

    $m \in {\mathbb{N}^*}$,0<αmn,1<p1,…,pm<∞,p=(p1,…,pm),0<pp0<∞,0<qq0<∞.如果

    则存在正常数C,使得

    由(1)式和(2)式可知,文献[14-15]考虑了当p0n/α时,多线性分数次积分算子在Morrey空间上的有界性,那么当p0n/α时,可以得到什么结果呢?这就是本文要研究的问题.

1.   预备知识
  • 定义1[16] 设fLloc.如果存在常数C>0,使得对于任意的球$B \in {\mathbb{R}^n}$,满足

    则称其属于BMO空间,其中

    最小的常数C被定义为f的BMO范数.

    定义2 设0<α<1,Lipschitz空间Lipα被定义为

    定义3[15] 设向量p=(p1,…,pm),1≤p1,…,pm≤∞,0<pp0<∞且

    对于在${\mathbb{R}^n}$上的一些可测函数集f=(f1,…,fm),多Morrey范数被定义为

    定义多Morrey空间$\mathscr{M}$pp0是在${\left( {{\mathbb{R}^n}} \right)^m}$上具有(3)式形式的所有可测函数f构成的集合

    在某种意义上,它在${\left( {{\mathbb{R}^n}} \right)^m}$中几乎处处收敛,并且假设每一个向量函数(f1k,…,fmk)都满足

    那么f$\mathscr{M}$pP0的范数被定义为

    其中下确界是取遍如(3)式的所有函数.

2.   主要结果及其证明
  • 这一部分给出分数次积分算子Iαm在BMO空间和Lipschitz空间上的端点估计,即定理1和定理2,并对其进行证明.

    定理1 设$m \in {\mathbb{N}^*}$,1<p1,…,pm<∞,0<α=${\frac{n}{{{p_{_0}}}}}$<1,p=(p1,…,pm),并且0<pp0<∞

    则存在常数C>0,使得

     给定f=(f1,…,fm),对于任意的球B=B(x0r),只需证明不等式

    成立.

    Ω:={(y1,…,ym):|x0-y1|+…+|x0-ym|<2r}且

    由于

    对于I1,由Hölder不等式和Iαm的有界性可得

    注意到,对于(y1,…,ym)∈${\left( {{\mathbb{R}^n}} \right)^m}$\Ωxx0B,很容易得到

    现在估计I2.

    结合I1I2的估计可得

    至此完成定理1的证明.

    定理2 设$m \in {\mathbb{N}^*}$,1<p1,…,pm<∞,0<α-${\frac{n}{{{p_{_0}}}}}$<1,p=(p1,…,pm),并且0<pp0<∞

    则存在正常数C,使得

     对于任意的$x,y \in {\mathbb{R}^n}$,仅需证明

    由于

    对于J1,因为0<α-${\frac{n}{p}}$<1,所以存在αi(i=1,…,m)使得

    那么

    由于B(x,2r)⊂B(y,3r),因此可得

    对于J3,类似于I2的估计可得

    结合J1J2J3的估计可得

    至此完成定理2的证明.

    特别的,有以下推论:

    推论1 设$m \in {\mathbb{N}^*}$,(m-1)nαmn

    且1≤qipi<∞,(i=1,…,m).如果p=n/α,则有

    推论2 设$m \in {\mathbb{N}^*}$,0<αmn

    且1≤qipi<∞,(i=1,…,m).如果n/αp且0<α-n/p<1,则有

    注记1 在文献[14]中已经给出了推论1和推论2的证明,但文献[14]中的方法在证明定理1和定理2时已经不再适用,由以上定理1和定理2的证明可知,我们使用了新的分环的思想对其进行证明.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return