Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2018 Volume 40 Issue 5
Article Contents

Kun LIAO, Chun-sheng DUAN, Lin LI, et al. The Existence of the Solitary Waves for the Superlinear Klein-Gordon-Maxwell System with the Sign-Changing Potential[J]. Journal of Southwest University Natural Science Edition, 2018, 40(5): 89-93. doi: 10.13718/j.cnki.xdzk.2018.05.014
Citation: Kun LIAO, Chun-sheng DUAN, Lin LI, et al. The Existence of the Solitary Waves for the Superlinear Klein-Gordon-Maxwell System with the Sign-Changing Potential[J]. Journal of Southwest University Natural Science Edition, 2018, 40(5): 89-93. doi: 10.13718/j.cnki.xdzk.2018.05.014

The Existence of the Solitary Waves for the Superlinear Klein-Gordon-Maxwell System with the Sign-Changing Potential

More Information
  • Corresponding author: Lin LI ; 
  • Received Date: 21/11/2017
    Available Online: 20/05/2018
  • MSC: O176.3

  • The existence of the solitary waves for the superlinear Klein-Gordon-Maxwell system is considered in this paper. Because the equation is defined on ${{\mathbb{R}}^{3}} $ with a potential indefinite in sign, the variation energy functional does not satisfy the requirements of the mountain pass geometry. Using the local linking theorem, we obtain the existence of a nontrivial solution of it, thus improving and supplementing the existing results.
  • 加载中
  • [1] AZZOLLINI A, PISANI L, POMPONIO A. Improved Estimates and a Limit Case for the ElectrostaticKlein-Gordon-Maxwell System[J]. Proc Roy Soc Edinburgh Sect, 2011, 141(3): 449-463. doi: 10.1017/S0308210509001814

    CrossRef Google Scholar

    [2] AZZOLLINI A, POMPONIO A. Ground State Solutions for the Nonlinear Klein-Gordon-Maxwell Equa-Tions[J]. Topol Methods Nonlinear Anal, 2012, 35(1): 33-42.

    Google Scholar

    [3] BARTSCH T, WANG Z Q, WILLEM M. The Dirichlet Problem for Superlinear Elliptic Equations[J]. Stationary Partial Differential Equations, 2005(Ⅱ): 1-55.

    Google Scholar

    [4] BENCI V, FORTUNATO D. Solitary Waves of the Nonlinear Klein-Gordon Equation Coupled with the Maxwell Equations[J]. Rev Math Phys, 2002, 14(4): 409-420. doi: 10.1142/S0129055X02001168

    CrossRef Google Scholar

    [5] CHEN S J, SONG S Z. Multiple Solutions for Nonhomogeneous Klein-Gordon-Maxwell Equations on ${{\mathbb{R}}^{3}}$[J]. Nonlinear Anal Real World Appl, 2015, 22: 259-271. doi: 10.1016/j.nonrwa.2014.09.006

    CrossRef ${{\mathbb{R}}^{3}} $" target="_blank">Google Scholar

    [6] APRILE T D, MUGNAI D. Solitary Waves for Nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell Equations[J]. Proc Roy Soc Edinburgh, 2004, 134(5): 893-906. doi: 10.1017/S030821050000353X

    CrossRef Google Scholar

    [7] HE X. Multiplicity of Solutions for a Nonlinear Klein-Gordon-Maxwell System[J]. Acta Appl Math, 2014, 130(1): 237-250.

    Google Scholar

    [8] LI L, TANG C L. Infinitely Many Solutions for a Nonlinear Klein-Gordon-Maxwell System[J]. NonlinearAnal Theory Methods and Applications, 2014, 110(3): 157-169.

    Google Scholar

    [9] LI S J, WILLEM M. Applications of Local linking to Critical Point Theory[J]. J Math Anal Appl, 1995, 189(1): 6-32.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(954) PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

The Existence of the Solitary Waves for the Superlinear Klein-Gordon-Maxwell System with the Sign-Changing Potential

    Corresponding author: Lin LI ; 

Abstract: The existence of the solitary waves for the superlinear Klein-Gordon-Maxwell system is considered in this paper. Because the equation is defined on ${{\mathbb{R}}^{3}} $ with a potential indefinite in sign, the variation energy functional does not satisfy the requirements of the mountain pass geometry. Using the local linking theorem, we obtain the existence of a nontrivial solution of it, thus improving and supplementing the existing results.

  • 研究如下的Klein-Gordon-Maxwell系统:

    其中:ω>0是常数; u$ \phi $$ {{\mathbb{R}}^{3}}\to \mathbb{R}$是未知函数; V${{\mathbb{R}}^{3}}\to \mathbb{R} $为位势函数; g(xu):${{\mathbb{R}}^{3}}\times \mathbb{R}\to \mathbb{R} $是一连续函数.这个系统有强烈的物理背景:用以描述Klein-Gordon场和电磁场之间的相互作用.本问题具有变分结构,利用变分方法系统(1)已经有大量的研究结果[1-8].

    为了阐述我们的主要结果,做如下的假设:

    (V) V(x)∈C(${{\mathbb{R}}^{3}} $$ \mathbb{R}$)下方有界并且存在常数v0>0满足

    (H1) gC (${{\mathbb{R}}^{3}} $× $\mathbb{R} $$\mathbb{R} $),并且存在常数C>0和p∈[4,2*)使得|g(xt)|≤C(1+|t|p-1).

    (H2)当t→0时$ \frac{g\left( x, t \right)}{t}\to 0$x${{\mathbb{R}}^{3}} $一致成立.

    (H3)当|t|→+∞时$ \frac{{g\left( {x, t} \right)}}{{{t^3}}} \to + \infty $x${{\mathbb{R}}^{3}} $一致成立.

    (H4)设$\mathscr{G} $ (xt)=g(xt)t-4G(xt),则这里存在C>0和r0>0满足当|t|≥r0时有$\mathscr{G} $(xt)≥-C|t|2.

    研究系统(1)的一个主要困难是嵌入H1(${{\mathbb{R}}^{3}} $) $\circlearrowleft $ L2(${{\mathbb{R}}^{3}} $)不紧.为了克服这困难,定义带权Sobolev空间

    由于V是下方有界的,因此存在常数m>0满足$\tilde V\left( x \right) = V\left( x \right) + m{\rm{ }}>1 $.定义

    其上的内积和范数分别为

    从文献[3]可知嵌入X $ \circlearrowleft$ L2(${{\mathbb{R}}^{3}} $)是紧的.

    由嵌入X$ \circlearrowleft$L2(${{\mathbb{R}}^{3}} $)的紧性和自伴紧算子的谱理论,容易得到特征值问题

    拥有完整的一列特征值-∞<λ1λ2λ3≤…,λk→+∞.每个特征值λk根据其重数已经在序列中重复出现.我们用φk表示λk的特征函数,‖φk2=1.本文的主要结果如下:

    定理1  假设(V),(H1)-(H4)成立.如果0不是特征方程(1)的特征值,则Klein-Gordon-Maxwell系统(1)至少有一个非平凡解.

    注1  与前面关于系统(1)的结果(例如文献[5-8])不同,这里我们并没有对V加以正定性假设.

    为了证明我们的结果,下面的结论是必须的,证明请见文献[4].

    命题1  对任何uH1(${{\mathbb{R}}^{3}} $),这里存在唯一的$\phi $ = $ {\phi _u}$$\mathscr{D} $ 1,2(${{\mathbb{R}}^{3}} $)满足方程

    更进一步,映射ΦuH1(${{\mathbb{R}}^{3}} $) $ \mapsto $ Φ[u]=$ {\phi _u}$$\mathscr{D} $ 1,2(${{\mathbb{R}}^{3}} $)是连续可微的并且满足:

    (ⅰ)在集合{x|u(x)≠0}上有-ω$ {\phi _u}$≤0;

    (ⅱ) $\parallel {\phi _u}{\parallel _{{\mathscr{D}^{1, 2}}}} \le C\parallel u{\parallel _E}^2且\int {|{\phi _u}|{u^2} \le C\parallel u\parallel _{\frac{{12}}{5}}^4 \le C\parallel u\parallel _E^4} $.

    由命题1,系统(1)有如下能量泛函

    并且有

    对任何q[2, 6],显然嵌入E $\circlearrowleft $ Lq(${{\mathbb{R}}^{3}} $)是连续的,因此存在常数κq>0满足

    如果0<λ1,易得泛函$\mathscr{J} $满足山路几何结构,这种情况是简单的,我们这里不考虑.由定理1的条件可知0不是系统(1)的特征值,因此我们不妨认为存在整数l≥1满足0∈(λlλl+1).令

    E-E+分别是二次型

    的负空间和正空间.显然

    更进一步,这里存在常数κ满足

    如注记提到的那样,我们要使用局部环绕去证明定理1,下面重新回顾其定义.泛函$\mathscr{J} $关于直和分解E=E- $ \oplus $ E+在0点有一个局部环绕,如果存在常数ρ>0满足

    定义两个有限维空间序列E0± $ \subset $ E1±$ \subset $$ \subset $E±满足${{E}^{\pm }}=\overline{\underset{n\in \mathbb{N}}{\mathop{\cup }}\, \text{ }E_{n}^{\pm }} $.对多重指标α=(α-α+) ∈ ${{\mathbb{N}}^{2}} $定义空间Eα= $ E_{{{\alpha }^{-}}}^{-}\oplus E_{{{\alpha }^{+}}}^{+}$,用$\mathscr{J}_{\alpha } $表示泛函$\mathscr{J} $在空间$E_{\alpha } $上的限制泛函.

    定义多重指标有如下的序关系:对任何αβ${{\mathbb{N}}^{2}} $,称αβ如果α±β±.而称序列{αn} $ \subset {{\mathbb{N}}^{2}}$是相容的,如果对任何α${{\mathbb{N}}^{2}} $存在m$\mathbb{N} $满足对任何nm都有ααn.显然如果{αn}是相容的,则其任何子列也是相容的.

    定义1   称泛函ΦC1(X)满足Palais-Smale条件(简写为(PS)条件),如果当序列{αn}$ \subset {{\mathbb{N}}^{2}}$是相容的,任何序列{un} $ \subset $ E如果满足

    则其含有一个子列收敛到Φ的一个临界点.

    定理2[9]  假设泛函ΦC1(X)在0点有一个局部环绕,满足(PS)条件,并将有界集映为有界集,且对每个m$\mathbb{N} $都有

    Φ有一个非平凡临界点.

    显然条件(H1)和(H2)暗示这里存在常数C1>0满足当|t|<r0时|g(xt)|≤C1|t|和|G(xt) $|\le \frac{{{C}_{1}}}{2}|t{{|}^{2}}| $.因此存在C2>0当|t|<r0时有

    利用(H4),我们可得

    简单计算表明

    从(H3)易得对x${{\mathbb{R}}^{3}} $$\mathop {{\rm{lim}}}\limits_{{\rm{}}|t| \to \infty } \frac{{f\left( {x, {\rm{ }}t} \right)}}{{{t^3}}} = + \infty $一致成立,更进一步从(H2)可知

    因此存在Λ>0满足对任何(xt)∈${{\mathbb{R}}^{3}} $× $\mathbb{R} $

    借助于非线性项f,泛函$\mathscr{J} $$E\to \mathbb{R} $可改写为如下形式:

    引理1  假设(V),(H1),(H3)和(H4)被满足,则泛函$\mathscr{J} $满足(PS)条件.

      设序列{un}满足(6)式.其中{αn} $\subset {{\mathbb{N}}^{2}} $是相容的.显然

    如果‖un‖→∞,则由unEαn,(6)和(8)式知,对足够大的n

    归于某个子列,由紧嵌入X $\circlearrowleft $ L2(${{\mathbb{R}}^{3}} $)可推得${{v}_{n}}\rightharpoonup v $X中,vnvL2(${{\mathbb{R}}^{3}} $)中,vn(x)→v(x) a. e.在${{\mathbb{R}}^{3}} $中.在(10)式两边同乘以‖un-2,然后令n→∞可得$ \tilde{b}\int_{{{\mathbb{R}}^{3}}}{{{v}^{2}}\text{d}x}\ge 1$,因此v≠0.

    由(9)和(3)式,我们有

    x∈{x${{\mathbb{R}}^{3}} $|v≠0},显然|un(x)|→+∞,据此可得

    因此,由(9),(10)式和Fatou引理可知

    因为{un}满足(6)式,由(13)式,对足够大的n

    矛盾.因此{un}是空间X中的有界序列.最后用文献[8]中的方法,嵌入X $\circlearrowleft $ L2(${{\mathbb{R}}^{3}} $)的紧性,以及X= $ \overline{\underset{n\in \mathbb{N}}{\mathop{\cup }}\, \text{ }{{X}_{{{\alpha }_{n}}}}}$,我们容易得到序列{un}有一个子列收敛到Φ的一个临界点.引理证毕.

    引理2   假设(V),(H1)和(H2)被满足,则泛函$\mathscr{J} $在0点相对于空间分解E=E-$ \oplus $E+有一个局部环绕.

      由假设(H1)和(H2),这里存在常数C>0满足

    对任何uE-,由(3)式可推知

    这里

    类似,对任何uE+

    因为p>4,所需结果(5)可从(14)和(15)式得到.引理证毕.

    引理3  设YE的一个有限维子空间,则泛函$\mathscr{J} $在空间Y上反强制,即

      如果结论不成立,我们能选出序列{un} $ \subset $ Y和常数β$ \mathbb{R}$满足

    由于dimY<∞,归于某个子列,对某个vY,‖v‖=1有‖vn-v‖→0,vn(x)→ v(x)a.e.${{\mathbb{R}}^{3}} $.因为v≠0,类似于(13)式,有

    由此可推知

    矛盾.引理证毕.

    定理1的证明  我们将运用定理2证明泛函$\mathscr{J} $有一个非平凡的临界点.易得泛函$\mathscr{J} $将有界集映射为有界集.引理1和引理2可得泛函$\mathscr{J} $满足(PS)条件并且在0点有一个局部环绕.因此我们只需要验证(7)式成立,而dim(E-$ \oplus $Em+)<∞,这只是引理3的一个推论而已.证毕

Reference (9)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return