Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2018 Volume 40 Issue 8
Article Contents

De-yin WU. Independent Fuzzy Shells of Fuzzy Matroids[J]. Journal of Southwest University Natural Science Edition, 2018, 40(8): 89-94. doi: 10.13718/j.cnki.xdzk.2018.08.012
Citation: De-yin WU. Independent Fuzzy Shells of Fuzzy Matroids[J]. Journal of Southwest University Natural Science Edition, 2018, 40(8): 89-94. doi: 10.13718/j.cnki.xdzk.2018.08.012

Independent Fuzzy Shells of Fuzzy Matroids

More Information
  • Received Date: 24/05/2017
    Available Online: 20/08/2018
  • MSC: O157;O159

  • In this paper, many characters of independent fuzzy sets in fuzzy matroids are analyzed and, based on the common upper bound of independent fuzzy sets, the concept of "independent fuzzy shell" is defined. First, the relations of independent fuzzy shells with induced matroids, induced matroid sequence and fundamental sequence are discussed. With the help of these analyses, a calculating method of the independent fuzzy shell for ordinary fuzzy matroids is constructed, and the validity of this method is proven. The core of this method is that the independent fuzzy shell can be uniquely determined by the induced matroid sequence and the fundamental sequence. Then, the property of the fuzzy matroids is researched on two particular cases that the degree set of membership about independent fuzzy shells are the fundamental sequence set and the single point set. Finally, the particular properties of independent fuzzy shells are studied on closed fuzzy matroids, quasi-fuzzy graph matroids, the particular part of closed normal fuzzy matroids and fuzzy truncation-sequence matroids. In these discussions, some are from independent fuzzy shells to fuzzy matroids, and others from fuzzy matroids to independent fuzzy shells. With the help of these researches and discussions, the paper attempts to form a new concept and to find a new way for researching fuzzy matroids.
  • 加载中
  • [1] GOETSCHEL R, VOXMAN W. Fuzzy Matroids[J]. Fuzzy Sets And Systems, 1988, 27(3):291-302. doi: 10.1016/0165-0114(88)90055-3

    CrossRef Google Scholar

    [2] 吴德垠.一个准模糊图拟阵的新特征[J].西南大学学报(自然科学版), 2018, 40(2):35-39.

    Google Scholar

    [3] 刘桂真, 陈庆华.拟阵[M].长沙:国防科技大学出版社, 1994.

    Google Scholar

    [4] GOETSCHEL R, VOXMAN W. Fuzzy Circuits[J]. Fuzzy Sets and Systems, 1989, 32(1):35-43. doi: 10.1016/0165-0114(89)90086-9

    CrossRef Google Scholar

    [5] GOETSCHEL R, VOXMAN W. Bases of Fuzzy Mtroids[J]. Fuzzy Sets and Systems, 1989, 31:253-261. doi: 10.1016/0165-0114(89)90007-9

    CrossRef Google Scholar

    [6] 吴德垠.准模糊图拟阵[J].重庆大学学报(自然科学版), 1996, 19(3):101-109.

    Google Scholar

    [7] 刘文斌.准模糊图拟阵基图[J].模糊系统与数学, 2004, 18(3):80-85.

    Google Scholar

    [8] 夏军, 吴德垠, 陈娟娟.准模糊图拟阵基的性质[J].重庆师范大学学报(自然科学版), 2013, 30(2):56-59.

    Google Scholar

    [9] 陈娟娟, 吴德垠, 夏军.准模糊图拟阵的子拟阵[J].西南大学学报(自然科学版), 2014, 36(4):52-54.

    Google Scholar

    [10] 刘文斌, 刘冬兵.准模糊图拟阵的次限制最小基[J].数学实践与认识, 2015, 45(5):277-281.

    Google Scholar

    [11] 吴德垠, 王彭.关于模糊截短列拟阵的研究[J].模糊系统与数学, 2016, 30(5):125-131.

    Google Scholar

    [12] 吴德垠.闭正规模糊拟阵的模糊基集特征[J].重庆大学学报(自然科学版), 1996, 19(2):30-35.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(709) PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Independent Fuzzy Shells of Fuzzy Matroids

Abstract: In this paper, many characters of independent fuzzy sets in fuzzy matroids are analyzed and, based on the common upper bound of independent fuzzy sets, the concept of "independent fuzzy shell" is defined. First, the relations of independent fuzzy shells with induced matroids, induced matroid sequence and fundamental sequence are discussed. With the help of these analyses, a calculating method of the independent fuzzy shell for ordinary fuzzy matroids is constructed, and the validity of this method is proven. The core of this method is that the independent fuzzy shell can be uniquely determined by the induced matroid sequence and the fundamental sequence. Then, the property of the fuzzy matroids is researched on two particular cases that the degree set of membership about independent fuzzy shells are the fundamental sequence set and the single point set. Finally, the particular properties of independent fuzzy shells are studied on closed fuzzy matroids, quasi-fuzzy graph matroids, the particular part of closed normal fuzzy matroids and fuzzy truncation-sequence matroids. In these discussions, some are from independent fuzzy shells to fuzzy matroids, and others from fuzzy matroids to independent fuzzy shells. With the help of these researches and discussions, the paper attempts to form a new concept and to find a new way for researching fuzzy matroids.

  • 1988年,文献[1]将模糊理论引入拟阵,开启了模糊拟阵研究领域[1].模糊独立集是组成模糊拟阵的基础,模糊基又是最大的模糊独立集.那么这些最大模糊独立集是否有共同的上界呢?这个上界如果存在,它具有什么样的性质?对于我们熟知的闭模糊拟阵、闭正规模糊拟阵、准模糊图拟阵和模糊截短列拟阵,这个上界又有哪些特殊的地方?这些就是本文所要讨论的内容.本质上,这些讨论是从一个新的角度和方法来研究模糊拟阵.

1.   预备知识
  • E={x1x2,…,xN}是一个集合,则E上的模糊集μ是一个映射μE→[0, 1]. E上模糊集的全体记为F(E).关于模糊数学的有关概念和符号主要参见文献[2].有关拟阵的理论主要参见文献[3].

    定义1[1]  设E={x1x2,…,xN}是非空有限集,$\ell \subseteq F\left( E \right)$是满足下列条件的非空模糊集族:

    (ⅰ)(继承性)若$\mu \in \ell $νF(E),νμ,则$\nu \in \ell $

    (ⅱ)(交换性)若$\mu, \nu \in \ell $,|supp μ|<|supp ν|,则存在$\omega \in \ell $,使得:

    (a) μωμν

    (b) m(ω)≥min{m(μ),m(ν)}.

    则称对偶$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$E上的模糊拟阵,$\ell $称为M的模糊独立集族. $\forall \mu \in F\left( E \right)$,如果$\mu \in \ell $,则称μM的模糊独立集,否则称为M的相关模糊集. M的最大模糊独立集称为M的模糊基.

    有关模糊拟阵的理论参见文献[1, 4-5].

    $\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是模糊拟阵,∀r∈(0,1],令${I_r} = \left\{ {{C_r}\left( \mu \right)|\forall \mu \in \ell } \right\}$,则由文献[1]的定理2.1知,Mr=(EIr)是E上的拟阵.

    闭模糊拟阵和模糊拟阵闭包的概念可见文献[1],正规模糊拟阵的概念可参见文献[5],准模糊图拟阵的内容可参阅文献[2, 6-10],模糊截短列拟阵的理论可参看文献[11].

    为了以后叙述方便,令$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是模糊拟阵,其闭包记为$\mathit{\boldsymbol{\bar M}} = \left( {E, \bar \ell } \right)\left( {\forall r \in \left( {0, 1} \right]} \right)$,记

2.   模糊拟阵的独立模糊壳
  • 假设$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是没有模糊环的模糊拟阵,而且0=r0r1<…<rn≤1为M的基本序列,导出拟阵序列为

    E={e1e2,…,em},令rM={r1r2,…,rn}.

  • 定义2  构造模糊集σMF(E)为σME→[0, 1].∀eiE,取σM(ei)=sup{μ(ei)|∀μ$\ell $},我们称模糊集σM为模糊拟阵M的独立模糊壳.记λσ=R+(σM)={σM(ei)|∀eiEσM(ei)>0},称之为M的独立模糊壳隶属度集.

    容易看出,$\forall \mu \in \ell $,都有μσM.反之,∀μF(E),只要有eE,使得μ(e)>σM(e),必定有$\mu \notin \ell $.这也就是称σMM的独立模糊壳的主要原因.

    定理1  如果$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是闭模糊拟阵,则∀eiEσM(ei)=max{μ(ei)|∀μ$\ell $}.

     由文献[5]的定理1.10,$\forall \mu \in \ell $,都有M的模糊基ν,使得μν.又由文献[6]的定理8知,M只有有限个不同的模糊基.因此,对∀eiE,有

    这说明在闭模糊拟阵MσM可达.但是,反之却不一定.

    推论1  如果$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是闭模糊拟阵,设BM的全体模糊基组成的集合,则${\sigma _\mathit{\boldsymbol{M}}} = \mathop \vee \limits_{\mu \in B} \mu $.

    定理2  设$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是模糊拟阵,rM为其基本序列集,σM为其独立模糊壳,λσ为其独立模糊壳隶属度集.则有如下结论:

    (ⅰ) $\forall \mu \in \ell $,都有μσM.反之,$\forall \mu \in F\left( E \right)$,只要有eE使得μ(e)>σM(e),则$\mu \notin \ell $

    (ⅱ)∀λλσ,都有λrn,进而∀λλσ,存在i∈{1,2,…,n}使得ri-1λri

    (ⅲ)λσrM

    (ⅳ)σM=σM

    (ⅴ)rnλσ.

     (ⅰ)由σM的定义即知结论成立.

    (ⅱ)∀λλσ,都有eiE,使得λ=σM(ei).由σM(ei)的定义知,要么有$\mu \in \ell $使得μ(ei)=λ;要么有$\left\{ {{\mu _k}} \right\} \subseteq \ell $,使得μk(ei)在k趋于∞时,严格递增趋于λ,即

    μ(ei)=λ,取M的闭包M(文献[1]的定义3.5).由于M是包含M的最小的闭模糊拟阵,因此存在M的模糊基ν,使得λ=μ(ei)≤ν(ei).又由文献[6]的定理8知,存在rjrM,使得ν(ei)=rj.因此λrjrn,我们断言λrj-1.如果λrj-1,则取a∈(rj-1rj).构造模糊集δ=eia,根据文献[1]的定义3.5,Ia=Ia,则对∀r∈(0,1],当ra时,

    ra时,

    所以,由文献[1]的定理2.4知$\delta \in \ell $.但δ(ei)=aλ,这与已知矛盾.故

    $\mathop {\lim }\limits_{k \to \infty } {\mu _k}\left( {{e_i}} \right) = \lambda $,如果λrn,由$\mathop {\lim }\limits_{k \to \infty } {\mu _k}\left( {{e_i}} \right) = \lambda \left( {{\mu _k} \in \ell } \right)$知,可取某足够大的正整数k,使得μk(ei)=a∈(rnλ).由文献[1]的定理2.4知$\left\{ {{e_i}} \right\} \subseteq {C_a}\left( {{\mu _k}} \right) \in {I_a} \ne \mathit{\emptyset} $.但根据文献[1]的定义3.5和观察2.2,∀rrn都有Ir=,矛盾.则λrn.又由于M无模糊环,因此0<λrn.这说明存在j∈{1,2,…,n},使得rj-1λrj.

    (ⅲ)∀ λλσ,由(ⅱ),存在j∈{1,2,…,n},使得rj-1λrj.我们断言,λ=rj.否则,rj-1λrj,取r′∈(rj-1λ),r″∈(λrj).根据独立模糊壳的定义2,存在eE,使得λ=σM(e).因此,必有$\mu ' \in \ell $,使得μ′(e)≤r′,即{e}⊆Cr(μ′)∈Ir.而由r″>λ=σM(e)知,$\forall \mu \in \ell $,都不会有μ(e)≥r″,即$\left\{ e \right\} \notin {I_{r''}}$.由r′,r″∈(rj-1rj)和文献[1]的观察2.2知,Ir=Ir,这与{e}∈Ir,但$\left\{ e \right\} \notin {I_{r''}}$矛盾.由此知λ=rjrM,故λσrM.

    (ⅳ)由于M是包含M的最小的闭模糊拟阵,因此σMσM.下面证明σMσM.

    eiE,由(ⅲ)知,存在rjrM使得σM(ei)=rj.由定理1,存在$\mu \in \bar \ell $使得μ(ei)=rj,由此知{ei}∈Irj.取无穷数列{λk}⊆(rj-1rj),使其递增且$\mathop {\lim }\limits_{k \to \infty } {\lambda _k} = {r_j}$.构造无穷个模糊子集列{μk=eiλk},由文献[1]的观察2.2知$\left\{ {{e_i}} \right\} \in {\bar I_{{r_j}}} \subseteq {\bar I_{{\lambda _k}}} = {I_{{\lambda _k}}}$,再由文献[1]的定理2.4得出$\left\{ {{\mu _k}} \right\} \subseteq \ell $,因此

    从而

    σMσM.故σM=σM.

    (ⅴ)由文献[1]的定义3.5和观察2.2知,Irn.取{e}∈Irn,造模糊集μ=ern,由文献[1]的定理2.4知$\mu \in \ell $,因此,由μ(e)=rnσM(e)≥rn.再由(ⅱ)知σM(e)≤rn,得出σM(e)=rn.由(ⅳ)知σM(e)=σM(e)=rn,故而rnλσ.

    下面的定理描述了模糊拟阵的导出拟阵、导出拟阵列和基本序列与独立模糊壳隶属度集之间密切的关系.同时该定理也是计算独立模糊壳的有效工具.

    定理3  设$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是模糊拟阵,rM为其基本序列集,σM为其独立模糊壳,λσ为其独立模糊壳隶属度集,∀r∈(0,1],Ir={Cr(μ)| $\forall \mu \in \ell $}. ∀rirMriλσ的充要条件是存在eE,使得{e}∈Ir(0<r′<ri),但{e}∉Ir(rir″≤1).

     必要性 若riλσ,则有eE,使得ri=σM(e).由定理2的(ⅳ)知,ri=σM(e)=σM(e).再由定理1,存在$\mu \in \bar \ell $使得μ(e)=ri.则当0<r′<ri时,有$\left\{ e \right\} \in {C_{r'}}\left( \mu \right) \in \overline {{I_{r'}}} = {I_{r'}}$.当rir″≤1时,如果存在r″使得{e}∈Ir,则取rir″<ri+1,仍有$\left\{ e \right\} \in {I_{r''}} = \overline {{I_{r''}}} $.构造模糊集ν=er,则由文献[1]的定理2.4知$\nu \in \bar \ell $.由σM(e)=σM(e)=rir″=ν(e)知矛盾.因此{e}∉Ir.

    充分性 从{e}∈Ir(r′<ri),构造模糊集μ=er,由文献[1]的定理2.4知$\mu \in \ell $.所以σM(e)≥μ(e)=r′.由此,取数列{λk}⊆(ri-1ri),使得k→∞时{λk}递增趋于ri.构造模糊集列μk=eλk,同样也有$\left\{ {{\mu _k}} \right\} \subseteq \ell $.因此,从σM(e)≥μk(e)=λk${\sigma _\mathit{\boldsymbol{M}}}\left( e \right) \geqslant \mathop {\lim }\limits_{k \to \infty } {\lambda _k} = {r_i}$.

    另一方面,如果有$\mu \in \ell $,使得μ(e)>ri.r=μ(e),则rri,但{e}∈Cr(μ)∈Ir,与已知矛盾.因此,$\forall \mu \in \ell $,必有μ(e)≤ri,得出σM(e)≤ri.故ri=σM(e)∈λσ.

    由定理3,再用定理1,可以很容易得到如下推论:

    推论2  设$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是闭模糊拟阵,σM为其独立模糊壳,∀rirMriλσ的充要条件是存在eE,使得{e}∈Ir(0<r′≤ri),但{e}∉Ir(rir″≤1).

    推论2与定理3几乎一样,只是“{e}∈Ir(0<r′≤ri)”与“{e}∈Ir(0<r′<ri)”中一个是“≤”,而另一个是“<”.而这个差异就是闭模糊拟阵的独立模糊壳的体现.

    推论3  设$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是模糊拟阵,σM为其独立模糊壳,∀rirMriλσ的充要条件是存在eE,使得$\left\{ e \right\} \in {I_{{{\bar r}_i}}}$.如果i=1,2,…,n-1,则有$\left\{ e \right\} \notin {I_{\overline {{r_{i + 1}}} }}$.

    推论3说明σM可以由模糊拟阵的导出拟阵列和基本序列唯一确定.这是用来计算独立模糊壳的最好工具.

  • 本段主要讨论一些具有特殊性质的模糊拟阵的独立模糊壳的性态.

    定理4  设$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是模糊拟阵,基本序列为0=r0r1r2<…<rn≤1,导出拟阵序列为

    λσ=rM的充要条件是∀i(i=1,2,…,n),都存在eE,使得$\left\{ e \right\} \in {I_{{{\bar r}_i}}}$.如果in,则$\left\{ e \right\} \notin {I_{\overline {{r_{i + 1}}} }}$.

     根据推论3和定理2即可证明.

    推论4  如果$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是准模糊图拟阵[6],则λσ=rM.

    定理5  设$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是模糊拟阵,基本序列为0=r0r1r2<…<rn≤1,导出拟阵序列为

    σM=ω(Ern)的充要条件是∀eE,都有{e}∈Irn.

     必要性 反证,如果存在eE,使得{e}∉Irn.由于M无模糊环,因此,${\mathit{\boldsymbol{M}}_{{{\bar r}_1}}}$是无环拟阵.则存在i∈{1,2,…,n-1},使得$\left\{ e \right\} \in {I_{{{\bar r}_i}}}$,但$\left\{ e \right\} \notin {I_{\overline {{r_{i + 1}}} }}$.根据推论3可知riλσ,这与λσ={rn}矛盾.

    充分性 由定理2的(ⅴ)知,rnλσ.若有rirn(即in)使得riλσ,由推论3知,存在eE,使得$\left\{ e \right\} \in {I_{{{\bar r}_i}}}$,但$\left\{ e \right\} \notin {I_{\overline {{r_{i + 1}}} }}$,这与“∀eE,都有{e}∈Irn”矛盾.故λσ={rn}.

    推论5  如果$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是模糊截短列拟阵,则σM=ω(Ern).即,λσ={rn}.

    推论5也是模糊截短列拟阵的必要条件.由文献[12]的定理6,还有一类更简单的闭正规模糊拟阵,叫作初等模糊拟阵.

    推论6  设Mh=(EΨh)是拟阵M=(EI)上的高度为h(h∈(0,1])的初等模糊拟阵[12],则此模糊拟阵是模糊截短列拟阵,而且λσ={h}.

    根据文献[11]的定理3.5,模糊截短列拟阵是一类闭正规模糊拟阵.推论5和推论6给出了两类特殊的闭正规模糊拟阵的独立模糊壳的性质.

  • 从独立模糊壳来研究模糊拟阵较困难,我们来做一点尝试.取μF(E),μ,令$\ell = \left\{ {\nu \in F\left( E \right)|\nu \leqslant \mu } \right\}$,则$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是一个闭模糊拟阵.我们称此模糊拟阵为由模糊集μ生成的模糊拟阵.

    定理6  设$\mathit{\boldsymbol{M}} = \left( {E, \ell } \right)$是模糊拟阵,则其独立模糊壳σM$\ell $的充要条件是M是由模糊集σM生成的模糊拟阵.

     必要性 如果σM$\ell $,取μ=σM,则由定理2的(ⅰ)知,$\forall \nu \in \ell $,都有νσM=μ,即

    又由μ=σM$\ell$知{νF(E)|νμ}$\subseteq \ell $.因此$\ell = \left\{ {\nu \in F\left( E \right)|\nu \leqslant \mu } \right\}$.因此,M是由模糊集σM生成的模糊拟阵

    充分性 若M是由模糊集σM生成的模糊拟阵,则

    假设M的独立模糊壳为δ,我们证明δ=σM.

    eE,由独立模糊壳定义有

    因为$\forall \nu \in \ell $,都有νσM,则σM(e)≥δ(e).而从σM$\ell$.又知σM(e)≤δ(e),即σM(e)=δ(e).故σM=δ.

3.   结论
  • 本文首先从模糊拟阵的模糊独立集的共同上界出发,提出独立模糊壳的概念;然后详细讨论了独立模糊壳的许多性质以及计算办法;接着,深入讨论了独立模糊壳隶属度集是基本序列集,以及模糊壳隶属度集是单点集的两种极端情况;最后,利用独立模糊壳隶属度集的这两种情况,研究了闭模糊拟阵、模糊截短列拟阵、准模糊图拟阵和部分特殊闭正规模糊拟阵的独立模糊壳性质.然而,这些性质都是必要条件,而非充分条件.但是,还是可以通过独立模糊壳来对模糊拟阵进行研究.特别是将独立模糊壳结合模糊拟阵的其它概念和工具来研究模糊拟阵,可能会得到一些更好的结果.这将是以后进一步用独立模糊壳研究模糊拟阵的方向.

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return