Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 2
Article Contents

Juan WEI, Chao-sheng ZHU. Asymptotic Behavior of Solutions for Nonlocal Nonlinear Schr dinger Equations[J]. Journal of Southwest University Natural Science Edition, 2019, 41(2): 60-63. doi: 10.13718/j.cnki.xdzk.2019.02.009
Citation: Juan WEI, Chao-sheng ZHU. Asymptotic Behavior of Solutions for Nonlocal Nonlinear Schr dinger Equations[J]. Journal of Southwest University Natural Science Edition, 2019, 41(2): 60-63. doi: 10.13718/j.cnki.xdzk.2019.02.009

Asymptotic Behavior of Solutions for Nonlocal Nonlinear Schr dinger Equations

More Information
  • Corresponding author: Chao-sheng ZHU
  • Received Date: 03/01/2018
    Available Online: 20/02/2019
  • MSC: O175.29

  • This paper studies the asymptotic behavior of the solutions of the critical Schrödinger equations with nonlocal nonlinear terms, and prove the nonexistence of the asymptotic free solutions for this system by decay estimates of the solutions of the equations.
  • 加载中
  • [1] 石仁淑.一类一维临界非线性薛定谔方程组解的渐近行为[J].延边大学学报(自然科学版), 2015, 41(3):196-198. doi: 10.3969/j.issn.1004-4353.2015.03.002

    CrossRef Google Scholar

    [2] CIPOLATTI R, KAVIAN O. On a Nonlinear Schrödinger Equation Modelling Ultra-Short Laser Pulses with a Large Noncompact Global Attractor[J]. Discrete and Continuous Dynamical Systems, 2007, 17(1):121-132.

    Google Scholar

    [3] 韦玉程, 刘广刚.一类非线性Schrödinger方程正解的存在性[J].应用数学学报, 2013, 36(6):1127-1140.

    Google Scholar

    [4] 叶耀军.一类非线性Schrödinger方程的整体小解[J].应用数学学报, 2006, 29(1):91-96. doi: 10.3321/j.issn:0254-3079.2006.01.011

    CrossRef Google Scholar

    [5] BREZIS H, GALLOUET T. Nonlinear Schrödinger Evolution Equations[J]. Nonlinear Analysis, Theory, Methods, Applications, 1980, 4(4):677-681. doi: 10.1016/0362-546X(80)90068-1

    CrossRef Google Scholar

    [6] 代文霞, 朱朝生.四阶Schrödinger方程的动态分歧[J].西南大学学报(自然科学版), 2015, 37(7):111-116.

    Google Scholar

    [7] 李苗苗, 唐春雷.一类带临界指数的Schrödinger-Poisson方程正解的存在性[J].西南师范大学学报(自然科学版), 2016, 41(4):35-38.

    Google Scholar

    [8] ZHU C S. Global Attractor of Nonlocal Nonlinear Schrödinger Equation on $mathbb{R}$[J]. Advances in Analysis, 2016, 1(1):40-60.

    $mathbb{R}$" target="_blank">Google Scholar

    [9] ZHU C S, MU C L, PU Z L. Attractor for the Nonlinear Schrödinger Equation with a Non-Local Nonlinear Term[J]. Journal of Dynamical and Control Systems, 2010, 16(4):585-603.

    Google Scholar

    [10] HAYASHI N, LI C H, NAUMKIN P I. On a System of Nonlinear Schrödinger Equations in 2D[J]. Differential Integral Equations, 2011, 24(5/6):417-434.

    Google Scholar

    [11] BARAB J E. Nonexistence of Asymptotically Free Solutions for a Nonlinear Schrödinger Equation[J]. Journal of Mathematical Physics, 1984, 25(11):3270-3273. doi: 10.1063/1.526074

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1449) PDF downloads(195) Cited by(0)

Access History

Other Articles By Authors

Asymptotic Behavior of Solutions for Nonlocal Nonlinear Schr dinger Equations

    Corresponding author: Chao-sheng ZHU

Abstract: This paper studies the asymptotic behavior of the solutions of the critical Schrödinger equations with nonlocal nonlinear terms, and prove the nonexistence of the asymptotic free solutions for this system by decay estimates of the solutions of the equations.

  • 本文我们研究如下带非局部项的非线性Schrödinger方程组:

    其中: mj为粒子的质量;βj是耗散参数;αjγjβj$\mathbb{C}$j=1,2;wj为未知复值函数.

    Schrödinger方程在非线性光学、激光、孤波的传播中有重要应用.文献[1]研究了方程组(1)在没有非局部项的情况下其渐近自由解的非存在性.文献[2]证明了Schrödinger方程在能量空间H1($\mathbb{R}$),L2($\mathbb{R}$)中Cauchy问题的适定性.文献[3]证明了一类非线性Schrödinger方程存在正解以及解的聚集性,同时给出了解的衰减性估计.文献[4]研究了带有非线性项|u|pu的高阶非线性Schrödinger方程的Cauchy问题.对于Schrödinger方程的其他相关研究,可以参考文献[5-7].本文的主要目的是在文献[1]的基础上进一步证明方程组(1)的渐近自由解的非存在性.

    首先定义f的Fourier变换如下:

    ms$\mathbb{R}$,Sobolev空间Hm, s($\mathbb{R}$)满足

    C表示不同的正常数.由方程组(1)可以得到相应的自由Schrödinger方程组

    其中uj(0,x)=ϕj(x)(j=1,2).若存在方程组(2)的L2-自由解(u1u2),使得

    则称方程组(1)的解(w1w2)是渐近自由的.

    将方程组(1)的各方程两边分别乘以${{\overline{w}}_{1}}$${{\overline{w}}_{2}}$,取虚部,在$\mathbb{R}$上积分可得

    假设Im αj≤0,Im γj≥0,j=1,2且β1=${{\overline{\beta }}_{2}}$,则有$\frac{\text{d}}{\text{d}t}({{\left\| {{w}_{1}} \right\|}_{{{L}^{2}}}}^{2}+{{\left\| {{w}_{2}} \right\|}_{{{L}^{2}}}}^{2})\le 0$(见文献[8-9]).应用文献[10]中的方法,容易得到方程组(1)的Cauchy问题解的存在性和解的L-时间衰减估计,即下面的引理1:

    引理1  设Im αj≤0,Im γj≥0,3m1=m2ψj(x)∈H1,1($\mathbb{R}$),j=1,2,β1=${{\overline{\beta }}_{2}}$.假设对某个ε>0,有‖ψ1(x)‖H1,1+‖ψ2(x)‖H1,1ε,则存在方程组(1)的解w=(wj)j=1,2,使得wC([0, ∞];H1,1($\mathbb{R}$)),且${{\left\| w \right\|}_{{{L}^{\infty }}}}\le C{{\left(1+t \right)}^{-\frac{1}{2}}}$.

    引理2[11]  设(u1u2)为方程组(2)的光滑解.若ϕjL1($\mathbb{R}$)∩L2($\mathbb{R}$)(j=1,2),且2≤q≤∞,则:

    (ⅰ)存在正常数Cj,使得${{\left\| {{u}_{j}} \right\|}_{{{L}^{q}}}}\ge {{C}_{j}}{{t}^{-\left(\frac{1}{2}-\frac{1}{q} \right)}}(\forall t\ge {{T}_{0}})$

    (ⅱ)存在常数cj,使得${{\left\| {{u}_{j}} \right\|}_{{{L}^{q}}}}\le {{c}_{j}}{{t}^{-\left(\frac{1}{2}-\frac{1}{q} \right)}}\left(\forall t\ge 0 \right)$.

    本文的主要结果如下:

    定理1  设3m1=m2,Re αj>0,Im αj≤0,Im γj≥0,j=1,2且β1=${{\overline{\beta }}_{2}}$.若方程组(1)的解wC([0,∞);H1,1($\mathbb{R}$))满足衰减估计${{\left\| w \right\|}_{{{L}^{\infty }}}}\le C{{\left(1+t \right)}^{-\frac{1}{2}}}$,则不存在方程组(2)的自由解(u1u2),使得

     假设存在方程组(2)的解(u1u2),使得

    将方程组(1)的各方程两边分别乘以${{\overline{u}}_{1}}$${{\overline{u}}_{2}}$,取实部,在$\mathbb{R}$上积分可得:

    将方程组(2)的各方程两边分别乘以${{\overline{w}}_{1}}$${{\overline{w}}_{2}}$,取实部,在$\mathbb{R}$上积分可得:

    由(5)-(8)式可得

    下面估计方程(9)右边的各项.首先由Re αj>0(j=1,2)及引理2可知Φ1Ct-1.其次考虑Φ2.因为

    下面给出(10)式右边两项的估计.由不等式${{\left\| {{u}_{j}} \right\|}_{{{L}^{q}}}}\le {{c}_{j}}{{t}^{-\left(\frac{1}{2}-\frac{1}{q} \right)}}$(2≤q≤∞,j=1,2)可得

    由于

    因此

    又由Sobolev嵌入${{L}^{\infty }}\circlearrowleft {{L}^{\frac{3q}{q-1}}}$及引理1可知

    由于

    因此

    由(11)-(12)式可知,当t→0时有Φ2=o(t-1).同理可知,方程(9)右边第3项、第4项,当t→0时有Φ3=o(t-1),Φ4=o(t-1).

    下面考虑方程(9)右边第5项:

    重复(10)-(12)式的过程可知,Φ5=o(t-1).同理有Φ6=o(t-1),Φ7=o(t-1),Φ8=o(t-1).综上所述,当tT(假设T≥1)时有

    其中

    将(13)式两边同时关于t积分,可得

    此外,由φ(t)的定义可知

    利用Schwartz不等式,有

    由假设可得$\underset{t\to \infty }{\mathop{\text{lim}}}\, \left| \varphi \left(t \right) \right|=0$,这与(14)式矛盾,故定理1得证.

Reference (11)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return