Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 3
Article Contents

Lu WAN, Yu-ming HUANG, Ping FENG. NH2-MIL-101(Fe) Mimetic Peroxidase-Based Determination of Glucose[J]. Journal of Southwest University Natural Science Edition, 2019, 41(3): 84-88. doi: 10.13718/j.cnki.xdzk.2019.03.012
Citation: Lu WAN, Yu-ming HUANG, Ping FENG. NH2-MIL-101(Fe) Mimetic Peroxidase-Based Determination of Glucose[J]. Journal of Southwest University Natural Science Edition, 2019, 41(3): 84-88. doi: 10.13718/j.cnki.xdzk.2019.03.012

NH2-MIL-101(Fe) Mimetic Peroxidase-Based Determination of Glucose

More Information
  • Corresponding author: Yu-ming HUANG ; 
  • Received Date: 26/07/2018
    Available Online: 20/03/2019
  • MSC: X703

  • The material of NH2-MIL-101(Fe) metal-organic framework was found to be able to catalyze the oxidization of 3, 3', 5, 5'-tetramethylbenzidine (TMB) by H2O2 to produce a blue product, showing intrinsic peroxidase-like activity. Furthermore, the NH2-MIL-101(Fe) was found to exhibit good robustness in a wide temperature range from 4 to 80℃ and in a wide pH range from 2 to 10. In a study reported herein, a new method for the detection of glucose was developed when combined with glucose oxidase. Under optimal conditions, the absorbance at 652 nm showed linear response with glucose concentrations in the range from 0.75 μmol/L to 50 μmol/L with a detection limit of 0.75 μmol/L. The proposed method was applied to determine the content of glucose in human serum samples and satisfactory results were obtained.
  • 加载中
  • [1] 刘有芹, 颜芸, 沈含熙.模拟酶的研究与发展[J].化学进展, 2005, 17(6):1067-1073. doi: 10.3321/j.issn:1005-281X.2005.06.017

    CrossRef Google Scholar

    [2] XIE J, ZHANG X, WANG H, et al. Analytical and Environmental Applications of Nanoparticles as Enzyme Mimetics[J]. TrAC:Trends in Analytical Chemistry, 2012, 39:114-129. doi: 10.1016/j.trac.2012.03.021

    CrossRef Google Scholar

    [3] LI J R, MA Y G, McCARTHY M C, et al. Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks[J]. Coordination Chemistry Reviews, 2011, 255(15-16):1791-1823. doi: 10.1016/j.ccr.2011.02.012

    CrossRef Google Scholar

    [4] BRADSHAW D, GARAI A, HUO J. Metal-Organic Framework Growth at Functional Interfaces:Thin Films and Composites for Diverse Applications[J]. Chemical Society Reviews, 2012, 43(24):2344-2381.

    Google Scholar

    [5] BAUER S, SERRE C, DEVIC T, et al. High-Throughput Assisted Rationalization of the Formation of Metal Organic Frameworks in the Iron(Ⅲ) Aminoterephthalate Solvothermal System[J]. Inorganic Chemistry, 2008, 47(17):7568-7576. doi: 10.1021/ic800538r

    CrossRef Google Scholar

    [6] HARTMANN M, FISCHER M. Amino-Functionalized Basic Catalysts with MIL-101 Structure[J]. Microporous and Mesoporous Materials[J]. 2012, 164:38-43. doi: 10.1016/j.micromeso.2012.06.044

    CrossRef Google Scholar

    [7] TAYLOR-PASHOW K M L, ROCCA J D, XIE Z G, et al. Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery[J]. Journal of American Chemical Society, 2009, 131(40):14261-14263. doi: 10.1021/ja906198y

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  /  Tables(1)

Article Metrics

Article views(3247) PDF downloads(697) Cited by(0)

Access History

Other Articles By Authors

NH2-MIL-101(Fe) Mimetic Peroxidase-Based Determination of Glucose

    Corresponding author: Yu-ming HUANG ; 

Abstract: The material of NH2-MIL-101(Fe) metal-organic framework was found to be able to catalyze the oxidization of 3, 3', 5, 5'-tetramethylbenzidine (TMB) by H2O2 to produce a blue product, showing intrinsic peroxidase-like activity. Furthermore, the NH2-MIL-101(Fe) was found to exhibit good robustness in a wide temperature range from 4 to 80℃ and in a wide pH range from 2 to 10. In a study reported herein, a new method for the detection of glucose was developed when combined with glucose oxidase. Under optimal conditions, the absorbance at 652 nm showed linear response with glucose concentrations in the range from 0.75 μmol/L to 50 μmol/L with a detection limit of 0.75 μmol/L. The proposed method was applied to determine the content of glucose in human serum samples and satisfactory results were obtained.

  • 天然酶是一类生物催化剂,可高效、专一催化生化反应,而且反应条件温和.然而,天然酶易变性失活,提纯困难,价格昂贵,储藏和使用不便,成本高,所以模拟酶的研究应运而生.目前已有大量利用卟啉、主体试剂、印迹高分子、膜体系及配合物等作为模拟酶的报道[1].近年来,纳米材料模拟酶的研究引起广泛关注,各种各样的纳米材料,如金属氧化物、金属硫化物、金属纳米微粒及碳材料等均具有模拟酶特性[2].

    金属有机框架(MOFs)材料具有良好的孔结构、较大的比表面积等特性,在气体储存、化学催化以及药物传输等方面显示出良好的应用前景[3-4].本研究利用NH2-MIL-101(Fe)作为催化剂,发现它能显著催化H2O2氧化TMB,产生蓝色反应,使体系的吸光度显著增加,表现出过氧化物模拟酶特性,而且在较宽的温度(4~80 ℃)及pH值(2~10)范围内保持其模拟酶活性,据此,结合葡萄糖氧化酶,建立了测定血清中葡萄糖的新方法.

1.   实验方法与材料
  • UV-2450型紫外-可见分光光度计(岛津,苏州). 3,3,5,5-四甲基联苯胺(TMB)和葡萄糖氧化酶(GOx)均购买于Sigma-Aldrich上海有限公司. FeCl3·6H2O、N,N-二甲基甲酰胺(DMF)、H2O2、盐酸、氢氧化钠、NaAc、HA、无水乙醇、葡萄糖、果糖、乳糖和麦芽糖均购自重庆泰兴化学试剂公司. 2-氨基对苯二甲酸(NH2-H2BDC)购自TCI化成工业发展有限公司(上海).玻璃仪器用体积分数为10%的硝酸溶液浸泡24 h,使用前用超纯水清洗干净.

  • 根据文献方法制备NH2-MIL-101(Fe) [5],将0.225 g NH2-H2BDC与0.675 g FeCl3·6H2O分别溶于一定量的DMF中,搅拌至完全溶解后,放入反应釜中加热至110 ℃,反应24 h,然后冷却至室温,并用DMF、乙醇交替洗涤,最后在60 ℃下真空干燥,即得NH2-MIL-101(Fe).

  • 取0.5 mL质量浓度为20 mg/L的NH2-MIL-101(Fe)、0.25 mL浓度为1 mmol/L的TMB溶液及0.25 mL不同浓度的H2O2加入浓度为0.2 mol/L的NaAc缓冲溶液(pH=4)中,定容至5 mL后,在30 ℃水浴中孵育20 min,冷却至室温后,用紫外-可见分光光度计进行测定,记录652 nm处的吸光度.以吸光度变化值ΔA=A-A0进行定量(A0A分别为未加入和加入H2O2时的吸光度).

    葡萄糖测定:在系列比色管中依次加入0.1 mL质量浓度为1 g/L的GOx、0.5 mL醋酸钠缓冲液(pH=7)及0.1 mL不同浓度的葡萄糖溶液,在37 ℃水浴条件下孵育30 min后,按照前面检测H2O2的过程进行比色测定.

  • 将NH2-MIL-101(Fe)在不同温度(4,8,15,20,25,30,40,50,60,70,80 ℃)和pH值(2,3,4,5,6,7,8,9,10)条件下孵育2 h后,按照1.3节的条件进行测定,考察NH2-MIL-101(Fe)作为模拟酶的耐受性.

2.   结果与分析
  • 利用水热法合成了NH2-MIL-101(Fe),图 1(a)是其红外光谱图,其中3458 cm-1及3352 cm-1是—NH2的对称和不对称的伸缩振动峰[6],1384 cm-1处是C—N的振动峰,这主要是芳香基团引起的,与文献[6]结果相符.从扫描电镜图(图 1(b))可以看出,合成的NH2-MIL-101(Fe)呈现灯笼状,且尺寸大小均匀.

  • 研究了NH2-MIL-101(Fe)催化H2O2氧化TMB的反应,结果见图 2(a).由图 2(a)可见,与TMB+ NH2-MIL-101(Fe)体系比较,TMB+ NH2-MIL-101(Fe)+H2O2体系在652 nm处的吸收峰明显增加,表明NH2-MIL-101(Fe)具有过氧化物模拟酶活性.

    探讨了pH值、温度、材料质量浓度等条件对其活性的影响(图 2(b)图 2(c)).可以看出,当pH值为4时其模拟酶活性达到最大值(图 2(b)).当反应温度从15 ℃增加到30 ℃时,酶活性迅速增加至最大值;当反应温度高于30 ℃后,酶活性降低(图 2(c)).故,选择30 ℃作为后续实验的最佳温度.实验了材料质量浓度的影响,当材料质量浓度达到20 mg/L时,模拟酶的活性增加趋势缓慢(图 2(c)).故,选择20 mg/L进行后续实验.在上述优化条件下,考察了过氧化氢浓度对显色反应的影响,发现652 nm处的吸光度随着过氧化氢浓度增加逐渐增大(图 2(d)).

  • 为了探讨NH2-MIL-101(Fe)的耐受性,将NH2-MIL-101(Fe)分别在不同温度(4~80 ℃)及pH值(2~10)条件下孵育2 h,再进行活性测定.从图 3可以看出,当温度在4~30 ℃范围内时,模拟酶活性基本保持不变,当孵育温度超过30 ℃时,模拟酶活性开始下降,但即使孵育温度达到80 ℃,材料的模拟酶活性仍然可以保持80%左右,表明NH2-MIL-101(Fe)耐热性较好. NH2-MIL-101(Fe)也表现出良好的耐受pH值的能力,如用pH=10的溶液处理后,其活性也可保持70%左右.研究结果表明NH2-MIL-101(Fe)具有良好的温度及pH值耐受性.

  • 基于TMB的显色反应与过氧化氢浓度相关的现象,结合葡萄糖氧化酶,建立了测定葡萄糖的方法.在上述优化条件下,葡萄糖浓度在0.75~50 μmol/L范围内与吸光度ΔA呈良好的线性关系,线性方程为ΔA=0.006c+0.005(r2=0.9940,n=9),对葡萄糖的检出限为0.75 μmol/L.考察了葡萄糖类似物,如果糖、麦芽糖、乳糖对测定0.1 mmol/L葡萄糖的干扰,结果表明,在5%的误差允许范围内,相同浓度的果糖、麦芽糖、乳糖均不干扰葡萄糖的测定,表明基于NH2-MIL-101(Fe)测定葡萄糖的方法有良好的选择性(图 4).

  • 将本法用于人血清中葡萄糖的检测,3份血清样品来自重庆市第九人民医院.测定前,血清样品用30 kDa Amicon Cell在3 000 r/min的转速下离心30 min,将滤液稀释20倍后,按照1.3节的方法测定葡萄糖,结果见表 1.由表 1可见,用本文的方法测得的人血清葡萄糖的结果与GOD-PAP法测定值相吻合,说明本法的准确度高,可用于实际样品分析.

Figure (4)  Table (1) Reference (7)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return