-
由于双向联想记忆神经网络在许多领域的成功应用(如模式识别、自动控制、信号和图像处理、人工智能、并行计算和优化问题等),其动力行为分析(如稳定性等)成了热门课题,这是因为各类神经网络的上述成功应用的前提条件是系统具有某种稳定性[1-3].文献[4]研究了一类双向联想记忆神经网络的指数型稳定性.本文欲推广文献[4]的结果到反应扩散情形,研究一类反应扩散模糊马尔科夫跳跃周期时滞系统的稳定性,并给出线性矩阵不等式条件的判据.由于线性矩阵不等式判据可以用计算机Matlab LMI工具箱编程验证其有效性,因此,在实际工程中的大型运算中占优.
文献[3]的推论4.1研究过以下模糊双向联想记忆神经网络:
该系统没考虑随机因素.本文将在此基础上同时考虑随机因素和模糊因素,所得结论会更佳.
HTML
-
考虑如下模糊反应扩散双向联想记忆神经网络系统模型:
模糊规则[2] j:如果w1(t)=μj1,…,ws(t)=μjs,则
其中:
而A=(aik)n×m,
$\mathit{\boldsymbol{\tilde A}} = {\left({{{\tilde a}_{ik}}} \right)_{n \times m}}$ 是扩散参数矩阵,$\nabla u = {\left({\nabla {u_1}, \cdots, \nabla {u_n}} \right)^{\rm{T}}}$ .这里$\nabla {u_i} = {\left({\frac{{\partial {u_i}}}{{\partial {x_1}}}, \cdots, \frac{{\partial {u_i}}}{{\partial {x_m}}}} \right)^{\rm{T}}}$ ,而$\mathit{\boldsymbol{A}} \circ \nabla u = {\left({{a_{ik}}\frac{{\partial {u_i}}}{{\partial {x_k}}}} \right)_{n \times m}}$ 表示矩阵A与$\nabla u$ 的Hadamard乘积[5].外输入变量:重置参数矩阵Bj=diag(bj1,bj2,…,bjn),
${\mathit{\boldsymbol{\tilde B}}_j} = {\mathop{\rm diag}\nolimits} \left({{{\tilde b}_{j1}}, {\rm{ }}{{\tilde b}_{j2}}, \cdots, {{\tilde b}_{jn}}} \right)$ ,联络权重参数矩阵Ck=(cijk)n×n,$\mathit{\boldsymbol{\tilde C}} = {\left({{{\tilde c}_{ijk}}} \right)_{n \times n}}$ ,Dk=(dijk)n×n,${\mathit{\boldsymbol{\tilde D}}_k} = {\left({{{\tilde d}_{ijk}}} \right)_{n \times n}}$ ,激活函数:${\tilde g_j}(u(t - h, x))$ 亦为如上类似表示.假设概率空间(Ω*,Υ,
$\mathbb{P}$ ),其中Ω*为样本空间,Υ是由样本空间子集所构成的σ-代数,$\mathbb{P}$ 是定义在Υ上的概率测度.设S={1,2,…,N},随机过程{r(t):[0,+∞)→S}是齐次的、有限状态的右连续轨线的马尔科夫过程,其生成集为∏=(πij)N×N,从t时刻状态i到t+Δt时刻状态j的转移率为:其中i,j∈S,而非负数πij≥0是从状态i到状态j(j≠i)的转移率,特别地,
${{\rm{ \mathit{ π} }}_{ii}} = - \sum\limits_{j = 1, j \ne i}^N {{{\rm{ \mathit{ π} }}_{ij}}} $ .变量δ>0,并且$\mathop {\lim }\limits_{\delta \to 0} \frac{{o(\delta)}}{\delta } = 0$ . {μjk:j=1,2,…,J;k=1,2,…,m}是模糊集,ωk(t)是前件变量,r*是IF-THEN规则[2]的个数,s为前提变量的个数.由单点模糊化、乘积推理和平均加权反模糊化得到模糊系统的整个状态方程为:时滞满足0≤h(t)≤τ0,0≤τ(t)≤τ0.记Ar=A(r(t)),Brj=Bj(r(t)),矩阵Crj,Drj也是类似记法.对于矩阵Ar=(aij(r)(t,x,u)),本文定义
类似地,对于矩阵
${\mathit{\boldsymbol{\tilde A}}_r} = \left({\tilde a_{ij}^{(r)}(t, x, u)} \right)$ ,记设反应扩散系统(2)的初值为:
其中
$\phi = {\left({{\phi _1}, \cdots, {\phi _n}} \right)^{\rm{T}}}, \varphi = {\left({{\varphi _1}, \cdots, {\varphi _n}} \right)^{\rm{T}}}$ 皆是有界连续函数.假设系统(2)满足纽曼边值其中
$\frac{{\partial {u_i}}}{{\partial \gamma }} = {\left({\frac{{\partial {u_i}}}{{\partial {x_1}}}, \frac{{\partial {u_i}}}{{\partial {x_2}}}, \cdots, \frac{{\partial {u_i}}}{{\partial {x_n}}}} \right)^{\rm{T}}}$ 表示边界$\partial \mathit{\Omega }$ 上的外法线方向导.本文记
$u(t, x, \phi, \varphi), v(t, x, \phi, \varphi)$ 为系统(2)满足(3),(4)式的解.在不引起混淆的情况下有时也简记为u,v.另外,本文定义:对任给模式r∈S,本文假设:
(A1)
$\mathit{\boldsymbol{A}}(r(t)), {\mathit{\boldsymbol{B}}_j}(r(t)), {\mathit{\boldsymbol{C}}_j}(r(t)), {\mathit{\boldsymbol{D}}_j}(r(t)), \mathit{\boldsymbol{L}}(t), \mathit{\boldsymbol{\tilde A}}(r(t)), {\rm{ }}{\mathit{\boldsymbol{\tilde B}}_j}(r(t)), {\rm{ }}{\mathit{\boldsymbol{\tilde C}}_j}(r(t)), {\rm{ }}{\mathit{\boldsymbol{\tilde D}}_j}(r(t)), \mathit{\boldsymbol{J}}(t)$ 都是$\mathbb{R}$ 上连续的ω-周期函数;(A2) 存在正定对角矩阵Fj,Gj,
${\mathit{\boldsymbol{\tilde F}}_j}, {\rm{ }}{\mathit{\boldsymbol{\tilde G}}_j}$ ,使得对任给u,v∈$\mathbb{R}$ n,有:其中|u|=(|u1|,|u2|,…,|un|)T∈
$\mathbb{R}$ n,$\forall u = {\left({{u_1}, \cdots, {u_n}} \right)^{\rm{T}}} \in {\mathbb{R}^n}$ .
-
首先关于初值ϕ,φ和
$\tilde \phi, {\rm{ }}\tilde \varphi $ ,本文记ut(ϕ,φ),vt(ϕ,φ)以及ut($\tilde \phi, {\rm{ }}\tilde \varphi $ ),vt($\tilde \phi, {\rm{ }}\tilde \varphi $ )是系统(2)的两组解.设:有时也简记:
引理1 设Ω是
$\mathbb{R}$ m中的有界区域,其边界$\partial \mathit{\Omega }$ 是C2光滑的.对任给模式r∈S,设Pr=diag(pr1,pr2,…,prn)为正定对角矩阵,αr是正数,满足αrI≤Pr.又设w=(w1,w2,…,wn)T,z=(z1,z2,…,zn)T,其中:从而
以及
其中wi(t,x),zi(t,x)∈H01(Ω),
$\forall $ t∈[0,+∞),i=1,2,…,n.这里I是单位矩阵,λ1是下述纽曼边值的最小正特征值:证 由于w=w(t,x)=ut(ϕ,φ)-ut(
$\tilde \phi, \tilde \varphi $ ),z=z(t,x)=vt(ϕ,φ)-vt($\tilde \phi, \tilde \varphi $ ),从而由高斯公式和纽曼边值条件有由椭圆算子谱理论知,Ω上关于纽曼边值条件的拉普拉斯算子-Δ是自伴算子且其逆紧,故存在一列非负特征值{λi}i=0∞满足0=λ0<λ1<λ2<…<λk<λk+1<…→+∞(k→+∞)以及一列相应的特征函数ζ0(x),ζ1(x),ζ2(x),….即
由-Δζk(x)=λζk(x)及积分准则可得
又因
对任给i≠j,特征函数ζi(x)和ζj(x)正交.从而特征函数列{ζk(x)}k=0∞构成空间L2(Ω)的一组正交基.设1≤p<+∞,由Sobolev嵌入定理知W01,p(Ω)⊂Lp*(
$\forall $ p<n),以及W01,p(Ω)⊂Lq($\forall $ q>0,p≥n),其中p*=$\frac{{np}}{{n - p}}$ 是Sobolev嵌入临界指数.从而对任意vi(x)∈H01(Ω),本文有wi(x)=$\sum\limits_{k = 0}^\infty {{c_k}} \zeta (x)$ 和由(8),(9)式得(5)式成立. (6)式类似可证.
注1 若Ω=[0,L]⊂
$\mathbb{R}$ ,则${\lambda _1} = {\left({\frac{{\rm{ \mathit{ π} }}}{L}} \right)^2}$ .如果Ω={(x1,x2)T∈$\mathbb{R}$ 2:0<x1<a,0<x2<b},则${\lambda _1} = \min \left\{ {{{\left({\frac{{\rm{ \mathit{ π} }}}{a}} \right)}^2}, {{\left({\frac{{\rm{ \mathit{ π} }}}{b}} \right)}^2}} \right\}$ .引理1改进了文献[6]的引理2.1.受文献[1-16]一些方法和结论的启发,本文将给出如下结论:
定理1 假如存在一列正定对角矩阵Pr(r∈S)以及正数列{αr},{αr},使得以下线性矩阵不等式成立:
则系统(2)有唯一ω-周期解,并且当t→+∞时所有其它解随机指数型收敛到该周期解,其中:
证 由系统(2)有
对任给模式r∈S,考虑以下李雅普诺夫泛函:
其中:
设
$\mathscr{L}$ 是弱微分算子[5],则类似地,有:
综上所述,可得
再由(10),(11)式及舒尔补定理知
因此,对任给模式r∈S,有
于是由(14)式知,存在常数c0>0使得
进一步有
定义
$\mathscr{C}$ =$\mathscr{C}$ ([-τ0,0]×Ω,$\mathbb{R}$ n)是[-τ0,0]×Ω到$\mathbb{R}$ n中的连续函数集,并且$\mathscr{C}$ ×$\mathscr{C}$ 是由连续函数构成的巴拿赫空间,对$\forall (\phi (s, x), \varphi (s, x)) \in \mathscr{C} \times \mathscr{C}$ ,其范数为再由(15)式知
令k∈
$\mathbb{N}$ 充分大,满足kω>τ0和$\sqrt {{{\rm{e}}^{ - \beta k\omega }}{c_0}} $ ≤0.9.定义一个庞加莱映射$\mathscr{f}$ :$\mathscr{C}$ ×$\mathscr{C}$ →$\mathscr{C}$ ×$\mathscr{C}$ 如下:则
这意味着
$\mathscr{f}$ k是$\mathscr{C}$ ×$\mathscr{C}$ 上的压缩映射.从而存在唯一的不动点(${\phi ^*}, {\varphi ^*}$ ),满足$\mathscr{f}$ k(${\phi ^*}, {\varphi ^*}$ )=(${\phi ^*}, {\varphi ^*}$ ).进一步,有这说明
$\mathscr{f}$ (${\phi ^*}, {\varphi ^*}$ )是映射$\mathscr{f}$ k的不动点.由$\mathscr{f}$ k的唯一性知设
$\left({{u_t}\left({{\phi ^*}, {\varphi ^*}} \right), {v_t}\left({{\phi ^*}, {\varphi ^*}} \right)} \right)$ 是系统(2)的解,因为则
$\left({{u_{t + \omega }}\left({{\phi ^*}, {\varphi ^*}} \right), {v_{t + \omega }}\left({{\phi ^*}, {\varphi ^*}} \right)} \right)$ 也是系统(2)的解.从而$\left({{u_t}\left({{\phi ^*}, {\varphi ^*}} \right), {v_t}\left({{\phi ^*}, {\varphi ^*}} \right)} \right)$ 是系统(2)的唯一的ω-周期解,并且所有其它解都指数型收敛到该周期解.注2 若忽略扩散现象,则Ar=
${\mathit{\boldsymbol{\tilde A}}_r}$ ≡0.本文的定理1还涉及随机现象,比文献[4]的确定系统(1)更贴近现实工程.并且由于现实工程中涉及大型计算,定理1的判据是线性矩阵不等式条件,因而可以用计算机特殊工具箱编程,这也是比文献[4]判据优越的地方.注3 反应扩散模型带来了数学上的一些困难,本文通过在乘积空间
$\mathscr{C}$ ×$\mathscr{C}$ 上定义压缩映射克服了这个困难.
-
将系统(2)配置如下数据:
设r*=2.模式1:
模式2:
固定β=0.01.运用计算机Matlab LMI工具箱解线性矩阵不等式(10)-(12),得:
由定理1知,系统(2)存在唯一的ω-周期解,并且所有其它解都指数型收敛到该周期解.