Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 6
Article Contents

Hai-yan ZHANG, Huo TANG, Li-na MA. Third Hankel Determinant for a Class of Generalized Analytic Functions Associated with Bernoulli's Lemniscate and Conjugate Points[J]. Journal of Southwest University Natural Science Edition, 2019, 41(6): 73-78. doi: 10.13718/j.cnki.xdzk.2019.06.011
Citation: Hai-yan ZHANG, Huo TANG, Li-na MA. Third Hankel Determinant for a Class of Generalized Analytic Functions Associated with Bernoulli's Lemniscate and Conjugate Points[J]. Journal of Southwest University Natural Science Edition, 2019, 41(6): 73-78. doi: 10.13718/j.cnki.xdzk.2019.06.011

Third Hankel Determinant for a Class of Generalized Analytic Functions Associated with Bernoulli's Lemniscate and Conjugate Points

More Information
  • Received Date: 12/03/2018
    Available Online: 20/06/2019
  • MSC: O174.5

  • Let \lt inline-formula \gt $\mathscr{A}$ \lt /inline-formula \gt be the class of analytic functions in the unit disc \lt inline-formula \gt $\mathscr{D}=\left\{z_{ :}|z| \lt 1\right\}$ \lt /inline-formula \gt normalized by \lt i \gt f \lt /i \gt (0)= \lt i \gt f \lt /i \gt '(0)-1=0. First, a class of generalized analytic functions associated with Bernoulli's lemniscate and conjugate points are introduced, which is shown as: $\begin{array}{l} SL_c^*(\alpha , \mu ) = \ \\ \left\{ {f \in \mathscr{A}\frac{{2\alpha \mu {z^3}{f^{\prime \prime }}(z) + 2(2\alpha \mu + \alpha - \mu ){z^2}{f^{\prime \prime }}(z) + 2z{f^\prime }(z)}}{{\alpha \mu {z^2}{{(f(z) + \overline {f(z)} )}^{\prime \prime }} + (\alpha - \mu )z{{(f(z) + \overline {f(z)} )}^\prime } + (1 - \alpha + \mu )(f(z) + \overline {f(z)} )}} \lt \sqrt {1 + z} , z \in {\cal \mathscr{D}}} \right\} \end{array} $ Then, the third Hankel determinant \lt i \gt H \lt /i \gt \lt sub \gt 3 \lt /sub \gt (1) for this function class is investigated and the upper bound of the above determinant is obtained.
  • 加载中
  • [1] GRAHAM I, KOHR G. Geometric Function Theory in One and Higher Dimensions[M]. New York:Marcel Dekker, 2003:27-58.

    Google Scholar

    [2] BANSAL D. Upper Bound of Second Hankel Determinant for a New Class of Analytic Functions[J]. Applied Mathematics Letters, 2013, 26(1):103-107.

    Google Scholar

    [3] SOKÖL J, STANKIEWICZ J. Radius of Convexity of Some Subclasses of Strongly Starlike Functions[J]. Zesz Nauk Politech Rzeszowskiej Mat, 1996, 19:101-105.

    Google Scholar

    [4] ALI R M, CHO N E, RAVICHANDRAN V, et al. Differential Subordination for Functions Associated with the Lemniscate of Bernoulli[J]. Taiwan J Math, 2012, 16(3):1017-1026. doi: 10.11650/twjm/1500406676

    CrossRef Google Scholar

    [5] SOKÖL J. Coefficient Estimates in a Class of Strongly Starlike Functions[J]. Kyungpook Math J, 2009, 49(2):349-353. doi: 10.5666/KMJ.2009.49.2.349

    CrossRef Google Scholar

    [6] NOONAN J W, THOMAS D K. On the Second Hankel Determinant of Areally Mean p-Valent Functions[J]. Transactions of the American Mathematical Society, 1976, 223(2):337-346.

    Google Scholar

    [7] FEKETE M, SZEGÖ G. Eine Benberkung Uber Ungerada Schlichte Funktionen[J]. J London Math Soc, 1933, 8(2):85-89.

    Google Scholar

    [8] SUDHARSAN T V, VIJAYALAKSHMI S P, ADOLF STEPHEN B. Third Hankel Determinant for a Subclass of Analytic Univalent Functions[J]. Malaya J Mat, 2014, 2(4):438-444.

    Google Scholar

    [9] BANSAL D, MAHARANA S, PRAJAPAT J K. Third order Hankel Determinant for Certain Univalent Functions[J]. J Korean Math Soc, 2015, 52(6):1139-1148. doi: 10.4134/JKMS.2015.52.6.1139

    CrossRef Google Scholar

    [10] 张海燕, 汤获, 马丽娜.一类解析函数的三阶Hankel行列式上界估计[J].纯粹数学与应用数学, 2017, 33(2):211-220. doi: 10.3969/j.issn.1008-5513.2017.02.013

    CrossRef Google Scholar

    [11] ZHANG H Y, TANG H, LI S H, et al. Some Basic Properties for Certain Classes of p-Valent Analytic Functions Using Differential Operator[J]. Chin Quart J of Math, 2018, 33(2):132-139.

    Google Scholar

    [12] ZHANG H Y, TANG H, NIU X M. Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function[J/OL]. Symmetry, 2018(10): 1-8[2018-02-10]. http://www.mdpi.com/journal/symmetry.

    Google Scholar

    [13] 张海燕, 汤获, 马丽娜.一类解析函数的三阶Hankel行列式[J].四川师范大学学报(自然科学版), 2018, 41(6):776-780. doi: 10.3969/j.issn.1001-8395.2018.06.010

    CrossRef Google Scholar

    [14] 汤获, 李书海, 牛潇萌, 等.伯努利双纽线区域内解析函数类的优化问题[J].数学的实践与认识, 2018, 48(11):263-267.

    Google Scholar

    [15] RAZA M, MALIK S N. Upper Bound of the Third Hankel Determinant for a Class of Analytic Functions Related with Lemniscate of Bernoulli[J]. Journal of Inequalities and Applications, 2013, 412(1):1-8.

    Google Scholar

    [16] 张海燕, 汤获, 马丽娜.某类解析函数的三阶Hankel行列式[J].华南师范大学学报(自然科学版), 2018, 50(4):107-110.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1280) PDF downloads(201) Cited by(0)

Access History

Other Articles By Authors

Third Hankel Determinant for a Class of Generalized Analytic Functions Associated with Bernoulli's Lemniscate and Conjugate Points

Abstract: Let \lt inline-formula \gt $\mathscr{A}$ \lt /inline-formula \gt be the class of analytic functions in the unit disc \lt inline-formula \gt $\mathscr{D}=\left\{z_{ :}|z| \lt 1\right\}$ \lt /inline-formula \gt normalized by \lt i \gt f \lt /i \gt (0)= \lt i \gt f \lt /i \gt '(0)-1=0. First, a class of generalized analytic functions associated with Bernoulli's lemniscate and conjugate points are introduced, which is shown as: $\begin{array}{l} SL_c^*(\alpha , \mu ) = \ \\ \left\{ {f \in \mathscr{A}\frac{{2\alpha \mu {z^3}{f^{\prime \prime }}(z) + 2(2\alpha \mu + \alpha - \mu ){z^2}{f^{\prime \prime }}(z) + 2z{f^\prime }(z)}}{{\alpha \mu {z^2}{{(f(z) + \overline {f(z)} )}^{\prime \prime }} + (\alpha - \mu )z{{(f(z) + \overline {f(z)} )}^\prime } + (1 - \alpha + \mu )(f(z) + \overline {f(z)} )}} \lt \sqrt {1 + z} , z \in {\cal \mathscr{D}}} \right\} \end{array} $ Then, the third Hankel determinant \lt i \gt H \lt /i \gt \lt sub \gt 3 \lt /sub \gt (1) for this function class is investigated and the upper bound of the above determinant is obtained.

  • $\mathbb{C}$表示复数集,$\mathscr{A}$表示单位圆盘${\mathscr{D}} = \{ z \in {\rm{\mathbb{C}}}:|z| < 1\}$内单叶解析且具有如下形式:

    的函数族.

    $\mathscr{P}$表示单位圆盘$\mathscr{D}$内具有如下形式:

    且满足条件Re p(z)>0的解析函数族.

    由文献[1]中的结论易知,对于函数$p(z) \in {\mathscr P}$,存在Schwarz函数ω(z),使得p(z)∈$\mathscr{P}$当且仅当$p(z) = \frac{{1 + w(z)}}{{1 - w(z)}}$.

    定义1[2]  设函数f(z)和g(z)在单位圆盘$\mathscr{D}$内解析.如果存在$\mathscr{D}$内的Schwarz函数ω(z),满足ω(0)=0,|ω(z)|<1且f(z)=g(ω(z)),则称f(z)从属于g(z),记为$f(z) \prec g(z)$.特别地,如果g(z)在$\mathscr{D}$上是单叶的,则$f(z) \prec g(z)\left({z \in {\mathscr D}} \right)$当且仅当f(0)=g(0),$f(\mathscr{D}) \subset g(\mathscr{D})$.

    定义2  设SLc*(αμ)表示具有(1)式的形式且满足下述条件的函数全体:

    易知若fSLc*(αμ),则有

    最早在文献[3]中介绍了双纽线函数,其他作者也给出了进一步的研究,详见文献[4-5].

    注意到,若在定义2中分别取μ=0,α=μ=0和α-1=μ=0时,则可得如下函数类:

    文献[6]定义了函数fq阶Hankel行列式

    其中a1=1, n≥1, q≥1.特别地, 有:

    因为$f \in \mathscr{A}$a1=1,故有

    易知H3(1)即为经典的Fekete-Szegö不等式[7].

    近年来,许多学者研究了各类解析函数的三阶Hankel行列式H3(1),得到了其上界估计,详见文献[8-13].文献[3]引入了与贝努利双纽线有关的解析函数类,许多学者对此函数类进行了进一步研究.如文献[4]讨论了与贝努利双纽线有关的解析函数类的微分从属性质,文献[14-16]分别讨论了贝努利双纽线区域内解析函数类的优化问题以及解析函数的三阶Hankel行列式.受以上工作的启发,本文研究了一类具有共轭点且与贝努利双纽线有关的广义解析函数SLc*(αμ)的三阶Hankel行列式H3(1),得到其上界估计.

    引理1[8]  如果$p(z) \in \mathscr{P}$,则|cn|≤2(n=1,2,…).

    引理2[9]  如果$p(z) \in \mathscr{P}$,则存在$x, z \in \mathbb{C}$且|x|≤1,|z|≤1,使得:

    定理1  如果fSLc*(αμ),则有:

      设fSLc*(αμ),由定义1和(2)式,可得

    其中ω(z)是Schwarz函数且满足ω(0)=0,|ω(z)|<1,$z \in \mathscr{D}$.令$\omega(z)=\sum\limits_{n=1}^{\infty} C_{n} z^{n}$,通过计算分别比较等式两边zz2z3z4的系数,易得:

    又因$\left| {{{\rm{C}}_n}} \right| \le 1, \sum\limits_{n = 1}^\infty {\left| {{{\rm{C}}_n}} \right|} \le 1$,故定理1成立.

    定理2  如果fSLc*(αμ),则

    其中:

      如果fSLc*(αμ),则由定义1及(2)式可得

    定义

    $ p(z) \in \mathscr{P}$,且:

    分别比较(13),(14)式中zz2z3的系数,得

    从而,可得

    设|x|=t,0≤t≤1,c1=cc∈[0, 2],则由三角不等式及引理1可得

    则易得$\frac{{\partial F}}{{\partial t}} \ge 0$.因此函数F(ct)在t=1处取得最大值,即

    经过简单计算可得

    G′(c)=0的根,又因为函数G″(r)<0,从而可得函数G(c)在c=r处取得最大值,则函数F(ct)在t=1,c=r处取得最大值,即|a2a3-a4|≤MA4.定理2得证.

    定理3  如果fSLc*(αμ),则有

    其中:

      由(15)式、(16)式、(17)式,可得

    设|x|=t,0≤t≤1,c1=cc∈[0, 2],则由三角不等式及引理2,可得

    则有$\frac{{\partial {\rm{F}}}}{{\partial t}} \ge 0$,从而函数F(ct)在t=1处取得最大值,即:

    下面分两种情况讨论:

    情形1  当4[6αμ+2(α-μ)+1]≥3[2αμ+(α-μ)+1]2时,则有G′(c)≥0,即函数G(c)关于c单调递增,所以函数G(c)在c=2处取得最大值,因此

    情形2  类似地,当4[6αμ+2(α-μ)+1]<3[2αμ+(α-μ)+1]2时,有G′(c)<0,可得函数F(c,t)在t=1,c=0处取得最大值,即有

    定理3得证.

    定理4  如果fSLc*(αμ),则有

      证明方法与定理3类似.

    定理5  如果f∈SLc*(α,μ),则

    其中MrA4QR分别由(10),(11),(12),(19),(20)式给出,且:

      因为

    将(3)-(6)式、(18)式和(21)式代入(22)式,即得定理5.

    在定理5中,若分别取μ=0,α=μ=0和α-1=μ=0,则可得如下的一些推论:

    推论1  如果fSLc*(α),则

    其中MA4QR分别是(10),(12),(19),(20)式中μ=0的情况,且:

    推论2  如果fSLc*,则

    推论3  如果fSLc*(1),则

    其中MA4分别是(10)式和(12)式中α=1,μ=0的情况.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return