Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 10
Article Contents

Huan-huan GUO, De-yi LI, Du ZOU. The α-Length of Planar Convex Bodies and Isoperimetric Inequalities[J]. Journal of Southwest University Natural Science Edition, 2019, 41(10): 51-55. doi: 10.13718/j.cnki.xdzk.2019.10.007
Citation: Huan-huan GUO, De-yi LI, Du ZOU. The α-Length of Planar Convex Bodies and Isoperimetric Inequalities[J]. Journal of Southwest University Natural Science Edition, 2019, 41(10): 51-55. doi: 10.13718/j.cnki.xdzk.2019.10.007

The α-Length of Planar Convex Bodies and Isoperimetric Inequalities

More Information
  • Received Date: 24/04/2018
    Available Online: 20/10/2019
  • MSC: O186

  • The Brunn-Minkowski inequality is an important research content of convex geometry analysis. At present, the Brunn-minkowski inequality about volume and other geometric quantities is widely known and plays an important role in various branches of mathematics. Brunn-Minkowski inequality of convex body surface area as a special case of Aleksandrov-Fenchel inequality has also been confirmed. But in Lp Brunn-Minkowski theory, the Brunn-minkowski inequality of Lp surface area measurement is still an important open problem. There is no effective method to prove the related conjecture for 0 < p < 1 and p > 1. In this paper, based on the addition of Minkowski, the monotone bounded theorem and integral mean value theorem are used to study the α-perimeter of convex body in the plane. The Brunn-Minkowski type inequality about α-perimeter is put forward and proved when two convex bodies are a regular n polygon and a unit disc, respectively.
  • 加载中
  • [1] FIREY W J. p-Means of Convex Bodies[J]. Mathematica Scandinavica, 1962, 10:17. doi: 10.7146/math.scand.a-10510

    CrossRef Google Scholar

    [2] PETTY C M. Geominimal Surface Area[J]. Geometriae Dedicata, 1974, 3(1):77-97.

    Google Scholar

    [3] OSSERMAN R. The Isoperimetric Inequality[J]. Bulletin of the American Mathematical Society, 1978, 84(6):1182-1239. doi: 10.1090/S0002-9904-1978-14553-4

    CrossRef Google Scholar

    [4] BONNESEN T, FENCHEL W. Theory of Convex Bodies[M]. New York:BCS Associates, 1987.

    Google Scholar

    [5] LUTWAK E. The Brunn-Minkowski-Firey Theory. I. Mixed Volumes and the Minkowski Problem[J]. Journal of Differential Geometry, 1993, 38(1):131-150. doi: 10.4310/jdg/1214454097

    CrossRef Google Scholar

    [6] LUTWAK E. The Brunn-Minkowski-Firey Theory Ⅱ[J]. Advances in Mathematics, 1996, 118(2):244-294. doi: 10.1006/aima.1996.0022

    CrossRef Google Scholar

    [7] THOMPSON A C. Minkowski Geometry[M]. Cambridge:Cambridge University Press, 1996.

    Google Scholar

    [8] CHAVEL I. Isoperimetric Inequalities (Constant Curvature)[M]. Cambridge:Cambridge University Press, 2001.

    Google Scholar

    [9] GARDNER R J. The Brunn-Minkowski Inequality[J]. Bulletin of the American Mathematical Society, 2002, 39(3):355-406. doi: 10.1090/S0273-0979-02-00941-2

    CrossRef Google Scholar

    [10] SANTALÍ L A, KAC M. Integral Geometry and Geometric Probability[M]. Cambridge:Cambridge University Press, 2004.

    Google Scholar

    [11] BOROCZKY K J, TRINH H. The Planar Lp-Minkowski Problem for 0 < p < 1[J]. Analysis of PDEs, 2016, 22:1610.

    Google Scholar

    [12] GARDNER R J. Geometric Tomography[M]. Cambridge:Cambridge University Press, 2014.

    Google Scholar

    [13] GRUBER P M. Convex and Discrete Geometry[M]. Berlin:Springer, 2007.

    Google Scholar

    [14] SCHNEIDER R. Convex Bodies:the Brunn-Minkowski Theory[M]. Cambridge:Cambridge University Press, 2014.

    Google Scholar

    [15] BÖRÖCZKY K, LUTWAK E, YANG D, et al. The Log-Brunn-Minkowski Inequality[J]. Advances in Mathematics, 2012, 231(3-4):1974-1997. doi: 10.1016/j.aim.2012.07.015

    CrossRef Google Scholar

    [16] BÖRÖCZKY K, LUTWAK E, YANG D, et al. The Logarithmic Minkowski Problem[J]. Journal of the American Mathematical Society, 2013, 26(3):831-852.

    Google Scholar

    [17] BÖRÖCZKY K, LUTWAK E, YANG D, et al. Affine Images of Isotropic Measures[J]. Journal of Differential Geometry, 2015, 99(3):407-442. doi: 10.4310/jdg/1424880981

    CrossRef Google Scholar

    [18] BUSEMANN H, PETTY C M. Problems on Convex Bodies[J]. Mathematica Scandinavica, 1956, 4(4):88-94.

    Google Scholar

    [19] BLASCHKE W. Reden und Reisen Eines Geometers[M]. Berlin:East, 1957.

    Google Scholar

    [20] BUSEMANN H. Convex Surfaces[M]. New York:Interscience, 1958.

    Google Scholar

    [21] ZHU G X. The Lp Minkowski Problem for Polytopes for 0 < p < 1[J]. Metric Geometry, 2015, 269(4):1070-1094.

    Google Scholar

    [22] 杨林, 罗淼, 王贺军. Lp对偶Brunn-Minkowski不等式[J].西南大学学报(自然科学版), 2017, 39(10):79-83.

    Google Scholar

    [23] 夏落燕, 方牛发.一个加强的平面Minkowski混合面积不等式[J].西南师范大学学报(自然科学版), 2016, 41(6):27-30.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1094) PDF downloads(436) Cited by(0)

Access History

Other Articles By Authors

The α-Length of Planar Convex Bodies and Isoperimetric Inequalities

Abstract: The Brunn-Minkowski inequality is an important research content of convex geometry analysis. At present, the Brunn-minkowski inequality about volume and other geometric quantities is widely known and plays an important role in various branches of mathematics. Brunn-Minkowski inequality of convex body surface area as a special case of Aleksandrov-Fenchel inequality has also been confirmed. But in Lp Brunn-Minkowski theory, the Brunn-minkowski inequality of Lp surface area measurement is still an important open problem. There is no effective method to prove the related conjecture for 0 < p < 1 and p > 1. In this paper, based on the addition of Minkowski, the monotone bounded theorem and integral mean value theorem are used to study the α-perimeter of convex body in the plane. The Brunn-Minkowski type inequality about α-perimeter is put forward and proved when two convex bodies are a regular n polygon and a unit disc, respectively.

  • 由Lutwak引入并在众多数学家的推动下,Brunn-Minkowski理论核心在近20年内发展成Lp Brunn-Minkowski理论(参见文献[1-13]).该理论中的根本性和基础性概念之一是凸体的Lp表面积测度(参见文献[14]).设p$ {\mathbb{R}}$K$ {\mathbb{R}}^2$中含原点于内部的凸体,则凸体KLp表面积测度SP(K,·)是单位球面Sn-1上的Borel测度.对任意Borel子集ωSn-1

    其中gK是定义在∂K上的广义Gauss映射.围绕Lp表面积的Minkowski问题(即Lp Minkowski问题)是Lp Brunn-Minkowski理论的基石(参见文献[15-17]). Lp表面积测度的总值Sp(KSn-1)称为KLp表面积. L1表面积是熟知的表面积,而L0表面积是体积,精确地讲,S0(K)=nV(K). Brunn-Minkowski理论的核心之一是Brunn-Minkowski不等式(参见文献[18-23]).

    KLn维欧氏空间中的凸体,则

    等式成立当且仅当KL位似.就凸体的Lp表面积,张高勇提出了如下猜想:

    KL$ {\mathbb{R}}^n$中含原点于内部的凸体,0<p<1,则

    n=2时,改记Lα(K)=S1-α(K),称为凸体Kα-周长.张高勇猜想的平面情形改写为如下不等式:

    其中0<α<1.本文就此问题做初步的讨论,将证明如下结果:

    定理1  若KL分别是质心在原点的正n边形域和圆盘,则不等式(3)成立.

      对平面上含原点于内部的凸体K,由α-周长的定义可知:对任意t>0,有

    由此正齐次性,不等式(3)的等价形式是

    其中t1t2>0.基于此事实,不妨假设K是单位圆盘B的外接正n边形域.并证明:

    其中ε>0.

    由于Lα为旋转不变量,不妨设K的一个顶点在x轴上,于是K的边上的单位外法向量角度为

    进而可知

    这里S(K,·)简写为SK表示表面积,δθi表示集中于θi的概率点测度.从而可以得到凸体Kα-周长为

    可直接计算圆盘

    接下来,计算Kε=K+εBα-周长Lα(Kε).当$ {\rm{ - }}\frac{\pi }{n} \le \theta \le \frac{\pi }{n}$时,由支撑函数的定义

    支撑函数hKε(θ)会出现两种情况:当θ=θi时,hKε(θ)=1+ε;当θ$ \left( { - \frac{{\left( {2k - 1} \right)\pi }}{n}, \frac{{\left( {2k - 1} \right)\pi }}{n}} \right), k \in {\mathbb{Z}} $时,hKε(θ)=$ \frac{{{\rm{cos}}\theta }}{{{\rm{cos}}\left( {\frac{\pi }{n}} \right)}} + \varepsilon $.则

    其中$ {\mathscr{H}}^1$是单位圆周上的弧长测度.由于K在关于绕原点转角$ \frac{{2k\pi }}{n}\left( {k \in \mathbb{Z}} \right)$的旋转变换上是不变的,故

    已知$ \frac{{{\rm{cos}}\theta }}{{{\rm{cos}}\left( {\frac{\pi }{n}} \right)}}$≥1,结合积分中值定理得到

    由(5)-(8)式,并对结果等价处理,得

    为了完成证明,需证明

    $ u = \frac{{\tan \left( {\frac{\pi }{n}} \right)}}{{\frac{\pi }{n}}}$,取(10)式不等号左侧部分得到

    对(11)式求导,得

    因为$ u = \frac{{\tan \left( {\frac{\pi }{n}} \right)}}{{\frac{\pi }{n}}}$≥1,ε,所以

    对(13)式求导,得

    由(12),(14)式可以得到复合函数f(g(x))单调递减.

    求极限

    证毕.

    本文给出了0<p<1时平面情形下特殊凸体的证明,该结果对Lp表面积测度的Brunn-Minkowski不等式及相关不等式的研究具有重要参考意义.

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return