Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 10
Article Contents

Jia-lin HUANG, Xing-gui LI. The Fixed Point Theorem and the Stability of Fuzzy Impulsive Systems with Probability Time-Delays[J]. Journal of Southwest University Natural Science Edition, 2019, 41(10): 56-61. doi: 10.13718/j.cnki.xdzk.2019.10.008
Citation: Jia-lin HUANG, Xing-gui LI. The Fixed Point Theorem and the Stability of Fuzzy Impulsive Systems with Probability Time-Delays[J]. Journal of Southwest University Natural Science Edition, 2019, 41(10): 56-61. doi: 10.13718/j.cnki.xdzk.2019.10.008

The Fixed Point Theorem and the Stability of Fuzzy Impulsive Systems with Probability Time-Delays

More Information
  • Corresponding author: Xing-gui LI
  • Received Date: 08/03/2018
    Available Online: 20/10/2019
  • MSC: O193

  • By defining a contraction mapping on a complete distance space, the authors employ the T-S fuzzy rule, probabilistic time-delay property and contraction mapping principle to derive an algebraic criterion for the stability of a class of T-S fuzzy probabilistic time-delay impulsive Bidirectional Associative Memory neural networks. Remarkably, the stability of the solution is given as soon as the existence of the solution of the system is derived. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.
  • 加载中
  • [1] RAO R F. Global Stability of a Markovian Jumping Chaotic Financial System with Partially Unknown Transition Rates under Impulsive Control Involved in the Positive Interest Rate[J]. Mathematics, 2019, 7(7):579. doi: 10.3390/math7070579

    CrossRef Google Scholar

    [2] LI H F, JIANG H J, HU C. Existence and Global Exponential Stability of Periodic Solution of Memristor-Based BAM Neural Networks with Time-Varying Delays[J]. Neural Networks, 2016, 75:97-109. doi: 10.1016/j.neunet.2015.12.006

    CrossRef Google Scholar

    [3] RAO R F, ZHONG S M, PU Z L. On the Role of Diffusion Factors in Stability Analysis for p-Laplace Dynamical Equations Involved to BAM Cohen-Grossberg Neural Network[J]. Neurocomputing, 2017, 223:54-62. doi: 10.1016/j.neucom.2016.10.036

    CrossRef Google Scholar

    [4] 饶若峰, 黄家琳, 钟守铭.反应扩散BAM神经网络的全局指数稳定性[J].吉林大学学报(理学版), 2012, 50(6):1086-1090.

    Google Scholar

    [5] 俸卫. T-S模糊马尔可夫跳跃时滞Cohen-Grossberg神经网络的几乎必然指数稳定性[J].西南师范大学学报(自然科学版), 2015, 40(5):10-12.

    Google Scholar

    [6] 黄家琳, 饶若峰. Cohen-Grossberg神经网络的全局指数稳定性[J].西南大学学报(自然科学版), 2016, 38(2):78-82.

    Google Scholar

    [7] RAO R F. Delay-Dependent Exponential Stability for Nonlinear Reaction-Diffusion Uncertain Cohen-Grossberg Neural Networks with Partially Known Transition Rates via Hardy-Poincare Inequality[J]. Chinese Annals of Mathematics(Series B), 2014, 35(4):575-598. doi: 10.1007/s11401-014-0839-7

    CrossRef Google Scholar

    [8] RAO R F, ZHONG S M, WANG X R. Stochastic Stability Criteria with LMI Conditions for Markovian Jumping Impulsive BAM Neural Networks with Mode-Dependent Time-Varying Delays and Nonlinear Reaction-Diffusion[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1):258-273. doi: 10.1016/j.cnsns.2013.05.024

    CrossRef Google Scholar

    [9] RAO R F, TANG G Z, GONG J Q, et al. Robust Stability of Nonlinear Diffusion Fuzzy Neural Networks with Parameter Uncertainties and Time Delays[J]. Complexity, 2018, 2018:1-19.

    Google Scholar

    [10] RAO R F, ZHONG S M, PU Z L. Fixed Point and p-Stability of T-S Fuzzy Impulsive Reaction-Diffusion Dynamic Neural Networks with Distributed Delay Via Laplacian Semigroup[J]. Neurocomputing, 2019, 335:170-184. doi: 10.1016/j.neucom.2019.01.051

    CrossRef Google Scholar

    [11] RAO R F, ZHONG S M. Stability Analysis of Impulsive Stochastic Reaction-Diffusion Cellular Neural Network with Distributed Delay via Fixed Point Theory[J]. Complexity, 2017, 2017:1-9.

    Google Scholar

    [12] RAO R F, PU Z L, ZHONG S M, et al. Fixed Points and Exponential Stability for Impulsive Time-Delays BAM Neural Networks via LMI Approach and Contraction Mapping Principle[J]. Mathematical Problems in Engineering, 2016, 2016:1-8.

    Google Scholar

    [13] RAO R F, PU Z L. LMI-Based Stability Criterion of Impulsive T-S Fuzzy Dynamic Equations Via Fixed Point Theory[J]. Abstract and Applied Analysis, 2013, 2013:1-9.

    Google Scholar

    [14] 牟天伟, 饶若峰.不动点原理在时滞BAM神经网络稳定性分析中的一个应用[J].西南大学学报(自然科学版), 2017, 39(6):5-9.

    Google Scholar

    [15] WANG X R, RAO R F, ZHONG S M. LMI-Based Stability Criterion for Impulsive CGNNs via Fixed Point Theory[J]. Mathematical Problems in Engineering, 2015, 2015:1-10.

    Google Scholar

    [16] 李兴贵, 黄家琳.不动点技巧在反应扩散模糊随机周期时滞系统稳定性分析中的应用[J].西南大学学报(自然科学版), 2019, 41(6):64-72.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1163) PDF downloads(187) Cited by(0)

Access History

Other Articles By Authors

The Fixed Point Theorem and the Stability of Fuzzy Impulsive Systems with Probability Time-Delays

    Corresponding author: Xing-gui LI

Abstract: By defining a contraction mapping on a complete distance space, the authors employ the T-S fuzzy rule, probabilistic time-delay property and contraction mapping principle to derive an algebraic criterion for the stability of a class of T-S fuzzy probabilistic time-delay impulsive Bidirectional Associative Memory neural networks. Remarkably, the stability of the solution is given as soon as the existence of the solution of the system is derived. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.

  • 以前很多文献用李雅普诺夫函数法导出神经网络的稳定性[1-9],然而每一种方法有其局限性,不动点方法是李雅普诺夫函数法的替代方法之一[10-16].本文作者考虑用压缩映射原理结合线性矩阵不等式方法给出一类T-S模糊概率时滞脉冲双向联想记忆神经网络的稳定性的代数判据(LMI).特别地,LMI判据适合于计算机Matlab LMI工具箱编程运算,符合实际工程中大型计算的要求.由于方法和条件的不同,本文更新了相关文献[14-16]的结果.

1.   预备知识
  • 本文考虑下述由IF-THEN规则所描述的T-S模糊双向联想记忆神经网络系统模型:

    模糊规则j  令t∈[0,+∞),ttkk=1,2,…,若ω1(t)=μj1,…,ωm(t)=μjm,则

    其中

    {μjk}是模糊集(j=1,2,…,Jk=1,2,…,m),ωk(t)是前件变量,m为前件变量的个数,J是IF-THEN规则的个数.激活函数

    脉冲函数

    时滞0≤τ(t),h(t)≤τ,∀i=1,2,…,n.我们简记时滞神经元之间相互联络的权系数矩阵CjDjn维方阵.脉冲时刻tk(k=1,2,…)满足0<t1t2<…,$ \mathop {\lim}\limits_{k \to \infty} {t_k}=\infty $. x(tk+)和x(tk-)分别表示x(t)在tk时刻的右极限和左极限.假设x(tk-)=x(tk)(∀k=1,2,…).令t≥0,ttkk=1,2,…,由单点模糊化、乘积推理和平均加权反模糊化得到模糊系统的整个状态方程为

    其中

    Υj(ω(t))为相应于规则j的隶属度函数,且$ \sum\limits_{j=1}^J {{\rho _j}\left( {\omega \left( t \right)} \right)} =1$ρj(ω(t))≥0.

    由于实际系统中的时滞达到较大值的概率很小,于是我们需要考虑概率时滞

    设实数c0≤1,定义随机变量

    t≥0,ttkk=1,2,…,考虑概率时滞模糊系统

    本文假设:f(0)=g(0)=ρ(0)=0∈$ \mathbb{R}^n$;对角矩阵A=diag(a1a2,…,an),B=diag(b1b2,…,bn)正定;对角矩阵FGH分别是向量函数fgρ的利普希茨常数矩阵.

2.   主要结论与证明
  • 定理1  假设存在常数0<λ<1,使得

    则脉冲时滞系统(2)是指数稳定的,其中δ=$ \mathop {{\rm{inf}}}\limits_{k = 1, 2, \cdots} \left( {{t_{k + 1}} - {t_k}} \right) > 0$.

      首先定义空间Ω=Ω1×Ω2.

    Ωi(i=1,2)是这样的函数空间,其函数qi(t):[-τ,∞)→$ \mathbb{R}^n$满足以下4条:

    (a) qi(t)连续于t∈[0,+∞)\{tk}k=1

    (b) q1(t)=ξ(t),q2(t)=η(t)(∀t∈[-τ,0]);

    (c) $ \mathop {\lim}\limits_{t \to t_k^ -} {q_i}\left( t \right) = {q_i}\left( {{t_k}} \right)$,且$ \mathop {\lim}\limits_{t \to t_k^ +} {q_i}\left( t \right)$存在(∀k=1,2,…);

    (d) 当t→∞时eγtqi(t)→0,其中γ>0是常数,满足γ<min{λminAλminB}.

    则易证Ω是下述度量下的完备空间:

    其中

    这里qiΩi$ {\tilde q_i}$Ωii=1,2.

    现定义压缩映射PΩΩ,这需3步来实现.

    第一步,关于系统(3),我们可以构造如下映射:

    我们不难证明PΩ上的压缩映射.

    第二步,不难证明$ P\left( \begin{array}{l} x\left( t \right)\\ y\left( t \right) \end{array} \right) \in \mathit{\Omega }, \forall \left( \begin{array}{l} x\left( t \right)\\ y\left( t \right) \end{array} \right) \in \mathit{\Omega }$.换而言之,$ P\left( \begin{array}{l} x\left( t \right)\\ y\left( t \right) \end{array} \right)$满足条件(a)-(d).

    第三步,证明(5)式定义的P是压缩映射.

    对任给$ \left( \begin{array}{l} x\left( t \right)\\ y\left( t \right) \end{array} \right), \left( \begin{array}{l} \bar x\left( t \right)\\ \bar y\left( t \right) \end{array} \right) \in \mathit{\Omega }$,我们有

    因此

    所以PΩΩ是压缩映射,从而存在PΩ上的不动点$ \left( \begin{array}{l} x\left( t \right)\\ y\left( t \right) \end{array} \right)$.即$ \left( \begin{array}{l} x\left( t \right)\\ y\left( t \right) \end{array} \right)$是模糊时滞脉冲系统(2)的解,满足$ {{\rm{e}}^{\gamma t}}\left\| {\left( \begin{array}{l} x\left( t \right)\\ y\left( t \right) \end{array} \right)} \right\|$→0(t→+∞).证毕.

3.   数值实例
  • 例1  考虑下列模糊BAM神经网络:

    模糊规则1

    t≥0,ttkk=1,2,…,若ω1(t)=$ \frac{1}{{{{\rm{e}}^{{\rm{ - 5}}{\omega _{\rm{1}}}\left( t \right)}}}}$,则

    模糊规则2

    t≥0,ttkk=1,2,…,若ω2(t)=1-$ \frac{1}{{{{\rm{e}}^{{\rm{ - 5}}{\omega _{\rm{1}}}\left( t \right)}}}}$,则

    其中τ(t)=h(t)=τ=0.8,t1=0.3,tk=tk-1+0.3kδ=0.5,x(s)=tanh sy(s)=2sin sf(x)=0.1sin xg(x)=0.09sin xρ(x)=0.1xA=(2),B=(1.95),C1=(0.02),C2=(0.03),D1=(0.15),D2=(0.18),F=(0.1),G=(0.09),H=(0.1).

    利用计算机Matlab LMI工具箱解(4)式,得到可行性数据

    则由定理1知,模糊系统(6)-(7)是指数稳定的.

4.   总结
  • 本文用不动点方法研究了模糊脉冲概率时滞BAM神经网络系统的稳定性,其优点是利用压缩映像原理给出系统解的存在性的同时,也给了该解的全局指数型稳定结论,这点由本文函数空间的构造可以看出.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return