Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 42 Issue 6
Article Contents

Xiao-dan YU, Xiang-zhi KONG. Vague Soft Clifford Semigroup[J]. Journal of Southwest University Natural Science Edition, 2020, 42(6): 46-53. doi: 10.13718/j.cnki.xdzk.2020.06.006
Citation: Xiao-dan YU, Xiang-zhi KONG. Vague Soft Clifford Semigroup[J]. Journal of Southwest University Natural Science Edition, 2020, 42(6): 46-53. doi: 10.13718/j.cnki.xdzk.2020.06.006

Vague Soft Clifford Semigroup

More Information
  • Corresponding author: Xiang-zhi KONG
  • Received Date: 04/09/2019
    Available Online: 20/06/2020
  • MSC: O159

  • Vague soft set combines the advantages of Vague set and soft set, it is an important tool for dealing with the problem of uncertainty. There are many studies on its algebraic structure. Clifford semigroup is a completely regular semigroup, it is a very special and important category in inverse semigroups. Based on the existing theoretical knowledge of Vague soft sets and Clifford semigroups, Vague soft sets and Clifford semigroups are combined to blur the Clifford semigroups for the first time, and a new concept Vague soft Clifford semigroup is proposed. It is a new algebraic structure of Vague soft set. Then the equivalence of Vague soft Clifford semigroups and the definition of Vague soft Clifford subsemigroups are given, and the basic algebraic properties of Vague soft Clifford semigroups are studied. Firstly, it is proved that the intersection and the union of any two Vague soft Clifford semigroups remain to be Vague soft Cliffford semigroups. Secondly, it is proved that the Vague soft Clifford semigroup is a semilattice of a group and a strong semilattice of the group and it is a regular semigroup. The semigroup structural decomposition of the Vague soft Clifford semigroup is given. Finally, the definition of homomorphism between two Vague soft Clifford semigroups is given, and the homomorphic relationship between Vague soft Clifford semigroups is verified.
  • 加载中
  • [1] ZADEH L A. Fuzzy Sets[J]. Information and Control, 1965, 8(3):338-353.

    Google Scholar

    [2] GAU W L, BUEHRER D J. Vague Sets[J]. IEEE Transactions on Systems Man and Cybernetics, 1993, 23(2):610-614.

    Google Scholar

    [3] MOLODTSOV D. Soft Set Theory-First Results[J]. Computers and Mathematics with Applications, 1999, 37(4-5):19-31. doi: 10.1016/S0898-1221(99)00056-5

    CrossRef Google Scholar

    [4] XU W, MA J, WANG S Y, et al. Vague Soft Sets and Their Properties[J]. Computers and Mathematics with Applications, 2010, 59(2):787-794.

    Google Scholar

    [5] SELVACHANDRAN G, SALLEH A R. On Normalistic Vague Soft Groups and Normalistic Vague Soft Group Homomorphism[J]. Advances in Fuzzy Systems, 2015, 2015:1-8.

    Google Scholar

    [6] YIN Y Q, JUN Y B, ZHAN J M. Vague Soft Hemirings[J]. Computers and Mathematics with Applications, 2011, 62(1):199-213. doi: 10.1016/j.camwa.2011.04.067

    CrossRef Google Scholar

    [7] ONAR S, YAVUZ S, ERSOY B A, et al. Vague Soft Module[J]. Journal of Intelligent and Fuzzy Systems, 2018, 34(4):2597-2609. doi: 10.3233/JIFS-17497

    CrossRef Google Scholar

    [8] 陈文, 余本功.基于Vague软集的模糊群决策方法研究[J].计算机工程与应用, 2014, 50(7):104-107, 115. doi: 10.3778/j.issn.1002-8331.1308-0301

    CrossRef Google Scholar

    [9] BUTZER P P, BERENS H. Fundamentals of Semi-Group Theory[M]//Semi-Groups of Operators and Approximation. Berlin Heidelberg: Springer, 1967: 1-82.

    Google Scholar

    [10] 孙垒.保持等价关系的变换半群的组合结果[J].西南大学学报(自然科学版), 2018, 40(8):82-88.

    Google Scholar

    [11] 苏蕴娜, 廖星冉.基于广义斐波那契数列的密码系统设计[J].西南师范大学学报(自然科学版), 2015, 40(11):61-66.

    Google Scholar

    [12] 陈大亮, 朱用文. Clifford矩阵半群[J].烟台大学学报(自然科学与工程版), 2010, 23(4):251-255. doi: 10.3969/j.issn.1004-8820.2010.04.001

    CrossRef Google Scholar

    [13] 邵勇, 越宪钟.半格序Clifford半群[J].数学进展, 2010, 39(1):59-63. doi: 10.11845/sxjz.2010.39.01.0059

    CrossRef Google Scholar

    [14] 杜兰. Clifford半群的膨胀[J].郑州大学学报(理学版), 2003, 35(1):20-22. doi: 10.3969/j.issn.1671-6841.2003.01.005

    CrossRef Google Scholar

    [15] 黄华伟, 刘双根, 陈汝伟, 等.基于Clifford半群上幂等元问题的密钥建立协议的研究[J].中国学术期刊文摘, 2009(3):26.

    Google Scholar

    [16] 黎宏伟. Clifford半群的自动性[J].江苏师范大学学报(自然科学版), 2016, 34(1):29-31. doi: 10.3969/j.issn.2095-4298.2016.01.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1932) PDF downloads(343) Cited by(0)

Access History

Other Articles By Authors

Vague Soft Clifford Semigroup

    Corresponding author: Xiang-zhi KONG

Abstract: Vague soft set combines the advantages of Vague set and soft set, it is an important tool for dealing with the problem of uncertainty. There are many studies on its algebraic structure. Clifford semigroup is a completely regular semigroup, it is a very special and important category in inverse semigroups. Based on the existing theoretical knowledge of Vague soft sets and Clifford semigroups, Vague soft sets and Clifford semigroups are combined to blur the Clifford semigroups for the first time, and a new concept Vague soft Clifford semigroup is proposed. It is a new algebraic structure of Vague soft set. Then the equivalence of Vague soft Clifford semigroups and the definition of Vague soft Clifford subsemigroups are given, and the basic algebraic properties of Vague soft Clifford semigroups are studied. Firstly, it is proved that the intersection and the union of any two Vague soft Clifford semigroups remain to be Vague soft Cliffford semigroups. Secondly, it is proved that the Vague soft Clifford semigroup is a semilattice of a group and a strong semilattice of the group and it is a regular semigroup. The semigroup structural decomposition of the Vague soft Clifford semigroup is given. Finally, the definition of homomorphism between two Vague soft Clifford semigroups is given, and the homomorphic relationship between Vague soft Clifford semigroups is verified.

  • 在现实生活中,由于事物变化的随机性和复杂性,以及人类知识的不完全、不可靠、不精确和不一致性,人类对客观事物的认识都会有不确定性.为解决这些不确定性问题,文献[1]首先开创了Fuzzy集理论,但这一理论存在一定缺陷,它限制隶属函数值为唯一的单值,为解决这一缺陷,文献[2]提出了Vague集理论,它是Fuzzy集理论的推广,通过引入一对真、假隶属度函数,可以同时显示出决策者进行一项决策时所掌握的支持度、反对度和未知度等相关信息.但是Fuzzy集和Vague集理论存在共同的缺陷:它们都只能处理一部分模糊信息.文献[3]通过引入软集理论弥补了这一缺陷,该理论引入了参数化思想,克服了Vague集只能处理部分不确定性信息的不足.文献[4]将Vague集和软集相结合,首次提出了Vague软集的概念,Vague软集目前已经成为一种新的研究方向.关于Vague软集的代数结构的相关研究也有很多[5-8],这些代数结构不但为代数研究提供新思路,同时为Vague软集的深入研究提供了理论基础,为解决工程学、医疗科学、经济学等复杂的不确定问题的研究提供了有力的数学工具.半群代数理论是在群论、环论之后发展起来的代数理论分支,它的研究方法与研究内容与群论、环论有很大差别[9],这一理论在组合数学、数据挖掘及算子理论等方面都有很好的应用,得到国内外众多学者的关注[10-11].逆半群作为半群理论的重要组成部分,研究内容比较丰富,Clifford半群就是一种特殊的逆半群,它是一种完全正则半群[9],由于其特殊性,它有一些重要的性质,如:Clifford半群是由群构成的半格,其幂等元与半群中的任意元素可交换等. Clifford半群是逆半群的重要类别,关于它的相关研究有很多[12-16],因此十分重要.

    本文试图将Vague软集和Clifford半群联系在一起,提出新概念Vague软Clifford半群,这样做不仅可以把二者的研究方法及理论应用到对方的研究中去,还能为二者的研究提供新思路,并为以后的深入研究奠定基础.

1.   预备知识
  • 定义 1[2]  设U是点(对象)空间,其中任意元素用x表示,U上的Vague集用真隶属度函数tA(x)和假隶属度函数fA(x)表示,tA(x)是从支持x的证据导出的x的肯定隶属度下界,fA(x)是从反对x的证据所导出的x的否定隶属度下界,tA(x):U→[0, 1],fA(x):U→[0, 1],其中tA(x)+fA(x)≤1.称[tA(x),1-fA(x)]为xA中的Vague值,记为A(x),论域U上Vague集的全体用V(U)表示.

    定义 2[3]  设U是论域,P(U)是U的幂集,E是参数集,AE,且FAP(U)是一个映射,称F(A)为U上的软集.

    定义 3[4]  设U是论域,E是参数集,AE,且FAV(U)是一个映射,即∀eAF(e)是U上的一个Vague集,称F(A)为U上的一个Vague软集.

    定义 4[9]  设S为非空集合且具有二元运算(·),若二元运算满足结合律,即∀abcS,(ab)c=a(bc),那么称S为半群.若半群S还具有一元运算“-1”,且满足:

    1) (a-1)-1=a

    2) aa-1a=a

    3) aa-1=a-1a

    4) (aa-1)(bb-1)=(bb-1)(aa-1).

    S为Clifford半群.

    定义 5[9]  令S是半群,如果关于∀aS,存在a-1S,使得a=aa-1a,(a-1)-1=aaa-1=a-1a,则称半群S是完全正则半群.

    定义 6[9]  完全单半群是满足以下条件的完全正则半群S

    定义 7  在偏序集(L,≤)中,如果任意两元xy都有上确界xy和下确界xy,则称偏序集(L,≤)(或简称L)为一个格.格实质上就是带有两种二元运算(∧,∨)且满足幂等律、交换律、结合律及吸收律(L1-L4)的一个代数系统:对∀xyzL,有:

    幂等律:xx=xxx=x.

    交换律:xy=yxxy=yx.

    结合律:x∧(yz)=(xy)∧zx∨(yz)=(xy)∨z.

    吸收律:x∧(xy)=x=x∨(xy).

    定义 8  称带有一个二元运算且满足幂等律、交换律及结合律的代数系统为一个半格.

    定义 9[7]  令F(A)和G(B)分别是论域UV上的两个Vague软集,令fUVgAB是两个函数,那么(fg)被称为从UV的Vague软函数,也就是说,(fg)是从U上的Vague软集F(A)到V上的Vague软集G(B)的Vague软函数.

2.   主要定理及证明
  • 首先给出Vague软Clifford半群及Vague软Clifford子半群的定义.

    定义 10  令S是Clifford半群,且$\widetilde F$(A)是S上的Vague软集,如果对于∀aA,∀xyS,以下条件成立:

    那么$\widetilde F$(A)是S上的Vague软Clifford半群.

    注 1  min{$\widetilde F$a(x),$\widetilde F$a(y)}是取$\widetilde F$a(x)和$\widetilde F$a(y)中区间较小者,如果区间相同,则取左端点值较小者,例如:若$\widetilde F$a(x)=[0,0.2],$\widetilde F$a(y)=[0.1,0.5],则min{$\widetilde F$a(x),$\widetilde F$a(y)}=$\widetilde F$a(x);若$\widetilde F$a(x)=[0,0.2],$\widetilde F$a(y)=[0.1,0.3],则min{$\widetilde F$a(x),$\widetilde F$a(y)}=$\widetilde F$a(x).

    注 2  ${\widetilde F_a}$(x-1)≥${\widetilde F_a}$(x)也可以写成${\widetilde F_a}$(x-1)=${\widetilde F_a}$(x),理由如下:

    因为

    从而得到${\widetilde F_a}$(x-1)=${\widetilde F_a}$(x).

    接下来给出的例子有助于更好地理解定义10.

    例 1  令集合S={mnk},(S,·,-1)为Clifford半群,$\widetilde F$(A)是S上的Vague软集,其中A={ab},那么$\widetilde F$(a),$\widetilde F$(b)是S上的Vague集,定义为

    不难验证$\widetilde F$(A)是S上的Vague软Clifford半群.

    定义 11  令$\widetilde F$(A)和$\widetilde F$(B)是Clifford半群S上的两个Vague软Clifford半群,如果以下条件成立:

    1) AB

    2) ∀xA$\widetilde F$(x)是$\widetilde G$(x)的Vague子Clifford半群.

    则称$\widetilde F$(A)是$\widetilde G$(B)的Vague软Clifford子半群,记作$\widetilde F$(A)≤$\widetilde G$(B).

    Vague软Clifford半群的等价性定义如下:

    定义 12  令$\widetilde F$(A)和$\widetilde G$(B)是Clifford半群S上的两个Vague软Clifford半群,如果满足:$\widetilde F$(A)是$\widetilde G$(B)的Vague软Clifford子半群,并且$\widetilde G$(B)是$\widetilde F$(A)的Vague软Clifford子半群,则称$\widetilde F$(A)和$\widetilde G$(B)是等价的Vague软Clifford半群,记作$\widetilde F$(A)≅$\widetilde G$(B).

    定理 1  令$\widetilde F$(A)和$\widetilde G$(B)是Clifford半群S上的两个Vague软Clifford半群,那么,$\widetilde F$(A)和$\widetilde G$(B)的交集$\widetilde F$(A)$\widetilde \cap $$\widetilde G$(B)也是S上的Vague软Clifford半群.

      令$\widetilde F$(A)$\widetilde \cap $$\widetilde G$(B)=$\widetilde H$(C),则C=AB.对∀xS,可定义

    且1-${f_{\widetilde H\left( c \right)}}$(x)定义为

    情况1  若cA-B,对于∀xyS,有:

    1) ${t_{\tilde H(c)}}(x \cdot y) = {t_{\tilde F(c)}}(x \cdot y) \ge \min \left\{ {{t_{\tilde F(c)}}(x), {t_{\tilde F(c)}}(y)} \right\} = \min \left\{ {{t_{\tilde H(c)}}(x), {t_{\tilde H(c)}}(y)} \right\}$

    2) ${t_{\widetilde H(c)}}\left( {{x^{ - 1}}} \right) = {t_{\widetilde F(c)}}\left( {{x^{ - 1}}} \right) \ge {t_{\widetilde F(c)}}(x) = {t_{\widetilde H(c)}}(x)$

    3) 因为${t_{\widetilde F(c)}}$(x0)=[1, 1],则${t_{\widetilde H(c)}}$(x0)=[1, 1]

    4) $1 - {f_{\tilde H(c)}}(x \cdot y) = 1 - {f_{\widetilde F(c)}}(x \cdot y) \ge \min \left\{ {1 - {f_{\tilde F(c)}}(x), 1 - {f_{\tilde F(c)}}(y)} \right\} = \min \left\{ {1 - {f_{\widetilde H(c)}}(x), 1 - } \right.\left. {{f_{\widetilde H(c)}}(y)} \right\}$

    5) $1 - {f_{\tilde H(c)}}\left( {{x^{ - 1}}} \right) = 1 - {f_{\tilde F(c)}}\left( {{x^{ - 1}}} \right) \ge 1 - {f_{\tilde F(c)}}(x) = 1 - {f_{\tilde H(c)}}(x)$

    6) 因为1-${f_{\widetilde F(c)}}$(x0)=[1, 1],则1-${f_{\widetilde H(c)}}$(x0)=[1, 1].

    情况 2  若cB-A,对于∀xyS显然成立,类似情况1可证.

    情况 3  若cAB,对于∀xyS,有:

    1) ${t_{\tilde H(c)}}(x \cdot y) = \left( {{t_{\tilde F(c)}}(x \cdot y)} \right) \wedge \left( {{t_{\tilde G(c)}}(x \cdot y)} \right) \ge \left( {\min \left\{ {{t_{{{\tilde F}_{(c)}}}}(x), {t_{\tilde F(c)}}(y)} \right\}} \right) \wedge \left( {\min \left\{ {{t_{\tilde G(c)}}(x)} \right.} \right., \left. {\left. {{t_{\tilde G(c)}}(y)} \right\}} \right) = \min \left\{ {\left( {{t_{\tilde F (c)}}(x) \wedge {t_{\tilde G(c)}}(x)} \right), \left( {{t_{\hat F(c)}}(y) \wedge {t_{\tilde G(c)}}(y)} \right)} \right\} = \min \left\{ {{t_{\tilde H(c)}}(x), {t_{\tilde H(c)}}(y)} \right\}$

    2) ${t_{\tilde H(c)}}\left( {{x^{ - 1}}} \right) = \left( {{t_{\tilde F(c)}}\left( {{x^{ - 1}}} \right)} \right) \wedge \left( {{t_{\tilde G(c)}}\left( {{x^{ - 1}}} \right)} \right) \ge \left( {{t_{\hat F(c)}}(x)} \right) \wedge \left( {{t_{\tilde G(c)}}(x)} \right) = {t_{\tilde H(c)}}(x)$

    3) 因为(${t_{\widetilde F\left( c \right)}}$(x0))∧(${t_{\widetilde G\left( c \right)}}$(x0))=[1, 1][1, 1]=[1, 1],则${t_{\widetilde H\left( c \right)}}$(x0)=[1, 1]

    4) ${1 - {f_{\tilde H(c)}}(x \cdot y) = \left( {1 - {f_{\tilde F(c)}}(x \cdot y)} \right) \wedge \left( {1 - \left( {{f_{\tilde G(c)}}(x \cdot y)} \right)} \right) \ge \left( {\min \left\{ {1 - {f_{\tilde F(c)}}(y), 1 - {f_{\tilde F(c)}}(y)} \right\}} \right) \wedge \left( {\min \left\{ {1 - {f_{\tilde G(c)}}(x), 1 - {f_{\tilde G(c)}}(y)} \right\}} \right) =\\ \min \left\{ {\left( {\left( {1 - {f_{\tilde F(c)}}(x)} \right) \wedge \left( {1 - {f_{\tilde G(c)}}(x)} \right)} \right), \left( {\left( {1 - {f_{\tilde F(c)}}(y)} \right) \wedge \left( {1 - {f_{\tilde G(c)}}(y)} \right)} \right)} \right\} =\\ \min \left\{ {1 - {f_{\tilde H(c)}}(x), 1 - {f_{\tilde H(c)}}(y)} \right\}}$

    5) $1 - {f_{\tilde H(c)}}\left( {{x^{ - 1}}} \right) = \left( {1 - {f_{\widetilde F(c)}}\left( {{x^{ - 1}}} \right)} \right) \wedge \left( {1 - {f_{\widetilde G(c)}}\left( {{x^{ - 1}}} \right)} \right) \ge \left( {1 - {f_{\widetilde G(c)}}\left( x \right)} \right) = 1 - {f_{\widetilde H\left( c \right)}}\left( x \right)$

    6) 因为(1-${f_{\widetilde F\left( c \right)}}$(x0))∧(1-${f_{\widetilde G\left( c \right)}}$(x0))=[1, 1][1, 1]=[1, 1],则1-${f_{\widetilde H\left( c \right)}}$(x0)=[1, 1].

    定理2  令$\widetilde F$(A)和$\widetilde G$(B)是Clifford半群S上的两个Vague软Clifford半群,那么,$\widetilde F$(A)和$\widetilde G$(B)的并集$\widetilde F$(A)$\widetilde \cup $$\widetilde G$(B)也是S上的Vague软Clifford半群.

      令$\widetilde F$(A)$\widetilde \cup $$\widetilde G$(B)=$\widetilde H$(C),则C=AB对∀xS成立,可定义

    且1-${f_{\widetilde H\left( c \right)}}$(x)定义为

    情况1  若cA-B,对于∀xyS,有:

    1) ${t_{\tilde H(c)}}(x \cdot y) = {t_{\hat F(c)}}(x \cdot y) \ge \max \left\{ {{t_{\tilde F(c)}}(x), {t_{\tilde F(c)}}(y)} \right\} = \max \left\{ {{t_{\tilde H(c)}}(x), {t_{\tilde H(c)}}(y)} \right\}$

    2) ${t_{\tilde H(c)}}\left( {{x^{ - 1}}} \right) = {t_{\tilde F(c)}}\left( {{x^{ - 1}}} \right){t_{\tilde F(c)}}(x) = {t_{\tilde H(c)}}(x)$

    3) 因为${t_{\widetilde F\left( c \right)}}$(x0)=[1, 1],则${t_{\widetilde H\left( c \right)}}$(x0)=[1, 1]

    4) $1 - {f_{\widetilde H(c)}}(x \cdot y) = 1 - {f_{\widetilde F(c)}}(x \cdot y) \ge \max \left\{ {1 - {f_{\widetilde F(c)}}(x), 1 - {f_{\widetilde F(c)}}(y)} \right\} = \max \left\{ {1 - {f_{\widetilde H(c)}}(x), 1 - } \right.\left. {{f_{\tilde H(c)}}(y)} \right\}$

    5) $1 - {f_{\tilde H(c)}}\left( {{x^{ - 1}}} \right) = 1 - {f_{\tilde F(c)}}\left( {{x^{ - 1}}} \right) \ge 1 - {f_{\tilde F(c)}}(x) = 1 - {f_{\tilde H(c)}}(x)$

    6) 因为1-${f_{\widetilde F\left( c \right)}}$(x0)=[1, 1],则1-${f_{\widetilde H\left( c \right)}}$(x0)=[1, 1].

    情况2  若cB-A,对于∀xyS显然成立,类似情况1可证.

    定理3  设S为Clifford半群,且$\widetilde F$(A)是S上的Vague软集,则以下条件等价:

    (ⅰ) $\widetilde F$(A)是Vague软Clifford半群;

    (ⅱ) $\widetilde F$(A)是群的半格;

    (ⅲ) $\widetilde F$(A)是群的强半格;

    (ⅳ) $\widetilde F$(A)是正则半群.

    其中,$\widetilde F$(A)是群的半格是指$\widetilde F$(A)上有同余,$\widetilde F$(A)/γ为半格Y,每个γ类是一个群.这就是说$\widetilde F$(A)=$\bigcup\limits_{\alpha \in Y} {{H_\alpha }} $,每个Hα是一个群,HαHβHαβ,其中αβ表示半格Y中的积,每个Hα称为$\widetilde F$(A)的一个群分量.

      (ⅰ)⇒(ⅱ)  令$\widetilde F$(A)是Vague软Clifford半群,那么$\widetilde F$(A)是完全正则半群,所以$\widetilde F$(A)是完全单半群$\widetilde F$(A)α的半格Y,且$\widetilde F$(A)中每一个幂等元$\widetilde F$(e)可用$\widetilde F$(a)$\widetilde F$-1(a)来表示,且在每一个幂等的完全单半群$\widetilde F$(A)α中,幂等元都可以这样表示.每一个幂等元交换的完全单半群$\widetilde F$(A)α是一个群,因此$\widetilde F$(A)是群的半格.

    (ⅱ)⇒(ⅲ)  对于半格Y中的每一个α,令$\widetilde F$(e)α$\widetilde F$(A)α的单位元,现假定αβ,那对于$\widetilde F$(A)α中的每一个$\widetilde F$(a)α,乘积$\widetilde F$(e)β$\widetilde F$(a)α属于$\widetilde F$(A)αβ=$\widetilde F$(A)β,因此可定义映射φαβ$\widetilde F$(A)α$\widetilde F$(A)β,满足$\widetilde F$(a)αφαβ=$\widetilde F$(e)β$\widetilde F$(a)α,很显然φαα$\widetilde F$(A)α上的单位映射,且φαβ是一个同态,对于$\widetilde F$(A)α中的每一个元素$\widetilde F$(a)α$\widetilde F$(b)α,有

    现在有$\widetilde F$(e)β$\widetilde F$(a)α$\widetilde F$(A)β,且$\widetilde F$(e)β$\widetilde F$(A)β的单位元,所以有

    接下来,假设αβγ,通过群同态的标准性质可发现,对于$\widetilde F$(A)α中的所有$\widetilde F$(a)α,都有

    因此有φαβφβγ=φαγ.

    最后,对半格Y中任意的αβ,完全单半群$\widetilde F$(A)α中的元素$\widetilde F$(a)α$\widetilde F$(A)β中的元素$\widetilde F$(b)β,乘积$\widetilde F$(a)α$\widetilde F$(b)β属于$\widetilde F$(A)γ,其中γ=αβ,有

    因此$\widetilde F$(A)与群$\widetilde F$(A)[Y$\widetilde F$(A)αφαβ]的强半格同构.

    (ⅲ)⇒(ⅳ)和(ⅳ)⇒(ⅰ)显然成立.

    接下来进一步验证Vague软Clifford半群间的同态关系,首先给出两个Vague软Clifford半群之间的同态定义.

    定义 13  令$\widetilde F$(A)和$\widetilde G$(B)分别是Clifford半群ST上的Vague软集,且(fg)是从ST的一个Vague软函数.如果f是从ST的一个Clifford半群同态,那么(fg)被称为从ST的Vague软同态.

    定理4  设$\widetilde F$$\widetilde F$(A)→$\widetilde G$(B)为Vague软Clifford半群$\widetilde F$(A)和$\widetilde G$(B)之间的同态且是满射,则有半格同态H${Y_{\widetilde F\left( A \right)}} \to {Y_{\widetilde G\left( B \right)}}$,且任取αβY,任取$\widetilde F$(x)∈Gα$\widetilde F$(y)∈Gβ,有

    反之,设满射F$\widetilde F$(A)→$\widetilde G$(B)及满同态H${Y_{\widetilde F\left( A \right)}} \to {Y_{\widetilde G\left( B \right)}}$使(1),(2)式成立,则F为同态.

      设$\widetilde F$(A)和$\widetilde G$(B)为Vague软Clifford半群,F$\widetilde F$(A)→$\widetilde G$(B)为满同态.设$\widetilde F$(x)∈Gα,则g($\widetilde F$(x))=α,取H${Y_{\widetilde F\left( A \right)}} \to {Y_{\widetilde G\left( B \right)}}$H(α)=α,如果F($\widetilde F$(x))∈Gα$\widetilde G$(B),则H的定义是确定的.实际上,若又有$\widetilde F$(y)∈Gα,我们需要证明F($\widetilde F$(y))∈Gα,因为此时

    于是有(F($\widetilde F$(x)),F($\widetilde F$(y)))∈${\widetilde H_{\widetilde G\left( B \right)}}$F($\widetilde F$(y))∈Gα,又显然H为同态,任取$\widetilde F$(x)∈$\widetilde F$(A),设$\widetilde F$(x)∈Gαα${Y_{\widetilde F\left( A \right)}}$,则若

    所以${g_{\widetilde G\left( B \right)}}F = H{g_{\widetilde F\left( A \right)}}$,(2)式成立.对∀$\widetilde F$(x),$\widetilde F$(y)∈$\widetilde F$(A),不妨设$\widetilde F$(x)∈Gα$\widetilde F$(y)∈Gβαβ${Y_{\widetilde F\left( A \right)}}$,由于F($\widetilde F$(x)$\widetilde F$(y))=F($\widetilde F$(x))F($\widetilde F$(y)),$\widetilde F$(x)$\widetilde F$(y)=$f_{\alpha , \beta }^{\widetilde F\left( A \right)}$($\widetilde F$(x),$\widetilde F$(y)),且

    从而(1)式成立.

    反之,设有满射F$\widetilde F$(A)→$\widetilde G$(B)及满同态H${Y_{\widetilde F\left( A \right)}} \to {Y_{\widetilde G\left( B \right)}}$,使得(1),(2)式成立,任取$\widetilde F$(x),$\widetilde F$(y)∈$\widetilde F$(A),设$\widetilde F$(x)∈Gα$\widetilde F$(y)∈Gβαβ${Y_{\widetilde F\left( A \right)}}$,则$\widetilde F$(x$\widetilde F$(y)=$f_{\alpha , \beta }^{\widetilde F\left( A \right)}$($\widetilde F$(x),$\widetilde F$(y)),F($\widetilde F$(x))·F($\widetilde F$(y))=$f_{\alpha ', \beta '}^{\widetilde G\left( B \right)}$(F($\widetilde F$(x)),F($\widetilde F$(y))),其中F($\widetilde F$(x))∈GαF($\widetilde F$(y))∈Gβ,于是α=(gβF)($\widetilde F$(x))=($H{g_{\widetilde F\left( A \right)}}$)($\widetilde F$(x))=H(α),同理可得β=H(β),由(1)式知

    F为同态,证毕.

3.   结束语
  • 本文将Clifford半群和Vague软集从数学角度进行了关联,首次提出了Vague软Clifford半群的概念,并研究了其基本代数性质且给出了相关证明.文中说明了Vague软Clifford半群是群的半格,并且研究了Vague软Clifford半群之间的同态关系,所获结果推广了Clifford半群的结构定理.此后,还可研究Clifford半群在模糊关系下的推广,以及Vague软集的其它代数结构(如环、域等),不断丰富模糊代数,这将在今后的研究中进行进一步讨论.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return