Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 42 Issue 8
Article Contents

Ni LIU, Yan-li GUO, Jin-shen REN, et al. Characterization of the Kernel Space of Idempotent Operator[J]. Journal of Southwest University Natural Science Edition, 2020, 42(8): 102-105. doi: 10.13718/j.cnki.xdzk.2020.08.014
Citation: Ni LIU, Yan-li GUO, Jin-shen REN, et al. Characterization of the Kernel Space of Idempotent Operator[J]. Journal of Southwest University Natural Science Edition, 2020, 42(8): 102-105. doi: 10.13718/j.cnki.xdzk.2020.08.014

Characterization of the Kernel Space of Idempotent Operator

More Information
  • Received Date: 26/09/2019
    Available Online: 20/08/2020
  • MSC: O177.1

  • Let H be an infinite-dimensional separable Hilbert space, and E be an idempotent operator in H.In this paper, the operator matrix representation of the orthogonal projection PN(E) on the kernel space of E is studied.A concrete structure of PN(E) is given.As corollary, the invertibility of the difference for PN(E) and orthogonal projection PE on range space of E is obtained.
  • 加载中
  • [1] ANDO T. Unbounded or Bounded Idempotent Operators in Hilbert Space[J]. Linear Algebra Appl, 2013, 438(10): 3769-3775. doi: 10.1016/j.laa.2011.06.047

    CrossRef Google Scholar

    [2] SANDER T. Bounds in Cohen's Idempotent Theorem[J]. Journal of Fourier Analysis and Applications, 2020, 26: 1-64.

    Google Scholar

    [3] AKBAR Z. A Characterization of Dichotomy in Therm of Boundedness of Solutions for Some Cauchy Problems[J]. Electronic Journal of Differential Equations, 2008, 2008(94): 1-5.

    Google Scholar

    [4] ANDRUCHOW E. Classes of Idempotents in Hilbert Space[J]. Complex Anal Oper Theory, 2016, 10(6): 1383-1409. doi: 10.1007/s11785-016-0546-3

    CrossRef Google Scholar

    [5] 窦艳妮, 杜鸿科.广义逆在幂等算子表示中的应用[J].陕西师范大学学报(自然科学版), 2011, 39(6): 10-13.

    Google Scholar

    [6] BÖTTCHER A, SIMON B, SPITKOVSKY I. Similarity Between Two Projections[J]. Integral Equuations and Operator Theory, 2017, 89(4): 507-518.

    Google Scholar

    [7] CORACH G, PORTA H, RECHT L. The Geometry of Spaces of Projections in C*-Algebras[J]. Adv Math, 1993, 101(1): 59-77.

    Google Scholar

    [8] CHEN L, LI J, LU F Y. Maps on Idempotent Operators with Infinite-Dimensional Kernel[J]. Bulletin of Iranian Mathematical Society, 2020, 46(1): 263-270. doi: 10.1007/s41980-019-00255-x

    CrossRef Google Scholar

    [9] RAKOČEVIĆ V. On The Norm of Idempotent Operators in a Hilbert space[J]. The American Mathematical Monthly, 2000, 107(8): 748-750. doi: 10.1080/00029890.2000.12005266

    CrossRef Google Scholar

    [10] DUDEK W A, MONZO R. The Structure of Idempotent Translatable Quasigroups[EB/OL]. [2019-08-05]. https://arXiv.org/abs/1810.04566.

    Google Scholar

    [11] HALMOS P R. A Hilbert Space Problem Book[M]. New York: Springer-Verlag, 1982.

    Google Scholar

    [12] 张宗杰, 吴炎.对角线元为数量幂等矩阵的上三角矩阵及其应用[J].西南师范大学学报(自然科学版), 2016, 41(8): 6-11.

    Google Scholar

    [13] LI Y, CAI X M, NIU J J, et al. The Minimal and Maximal Symmetries for J-Contractive Projections[J]. Linear Algebra Appl, 2019, 563: 313-330. doi: 10.1016/j.laa.2018.11.010

    CrossRef Google Scholar

    [14] HASSI S, NORDSTRÖM K. On Projections in a Space with an Indefinite Metric[J]. Linear Algebra Appl, 1994, 208-209: 401-417. doi: 10.1016/0024-3795(94)90452-9

    CrossRef Google Scholar

    [15] ANDO T. Projections in Krein Spaces[J]. Linear Algebra Appl, 2009, 431(12): 2346-2358. doi: 10.1016/j.laa.2009.03.008

    CrossRef Google Scholar

    [16] BUCKHOLTZ D. Hilbert Space Idempotents and Involution[J]. Proceedings of the American Mathematical Society, 1999, 128(5): 1415-1418. doi: 10.1090/S0002-9939-99-05233-8

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1288) PDF downloads(256) Cited by(0)

Access History

Other Articles By Authors

Characterization of the Kernel Space of Idempotent Operator

Abstract: Let H be an infinite-dimensional separable Hilbert space, and E be an idempotent operator in H.In this paper, the operator matrix representation of the orthogonal projection PN(E) on the kernel space of E is studied.A concrete structure of PN(E) is given.As corollary, the invertibility of the difference for PN(E) and orthogonal projection PE on range space of E is obtained.

  • 幂等算子因具有特殊的性质,在统计理论、信息传送、量子信息及经济学领域都有极为广泛的应用[1-6].一直以来,关于幂等算子及线性组合的表示与刻画都吸引着众多学者的关注.近年来,关于幂等算子的分解性及几何结构得到了研究[3-16].文献[13-14]对幂等算子的J-正(负)压缩、扩张的存在性及性质进行了讨论.特别地,文献[15]对Krein空间中的幂等算子进行了研究.本文主要针对幂等算子核空间上的正交投影算子E进行了研究,给出了该投影算子的一个矩阵表示,进一步借助该矩阵表示,给出了E的核空间上正交投影PN(E)与E的值域空间上正交投影PE之差的可逆性及其逆的表示,而这一结论也是文献[16]的主要结论.

    HK表示无限(可分)复Hilbert空间,B(H),B(HK)分别表示HHK上全体有界线性算子之集.对B(H)中的算子A,用A*表示A的伴随.若AB(H)满足(Axx)≥0成立,则称A是正的,记作A≥0.用B(H)+表示H上全体正的有界算子之集,若AB(H)+,记${A^{\frac{1}{2}}}$为正算子A的平方根.若AB(H)满足A=A2,则称A是幂等的,用B(H)Id表示H中的全体幂等算子之集.对H的闭子空间M,记PMM中的正交投影.特别地,PA表示闭子空间$\overline {R\left( A \right)} $上的正交投影.设TB(HK),我们用N(T),R(T)及$\overline {R\left( T \right)} $分别表示算子T的核空间、值域空间以及值域空间R(T)的闭包.

    容易验证:若PB(H)Id,则R(P)是闭子空间,且P可以写作2×2矩阵形式

    其中P1B(R(P)R(P)).

    引理1  设AB(H)+,且$\tilde A = \left( {\begin{array}{*{20}{l}} I&A\\ A&{{A^2}} \end{array}} \right)$,则ÃB(HH)+,且

      显然,Ã≥0.容易验证

    xHyH,且满足Ã(xy)t=0,即x+Ay=0,也就是x=-Ay,进一步PÃ(xy)t=0.因此N(Ã)⊆ N(PÃ),也就有$\overline {R\left( {\tilde A} \right)} $R(PÃ).结合等式(3)知$\overline {R\left( {\tilde A} \right)} $=R(PÃ),因此PÃ是子空间$\overline {R\left( {\tilde A} \right)} $上的正交投影.

    引理2[11](极分解定理)  设TB(HK),则存在部分等距算子UB(HK),使得T=U(T*T)$^{\frac{1}{2}}$,且满足$R(U) = \overline {R(T)} $$R({U^*}) = \overline {R({T^*})} $.

    引理3  设GB(H)是自伴算子,若存在部分等距算子UB(HK),使得F=UGU*U*UG=G,则PF=UPGU*.

      记Q=UPGU*,则

    因此Q是正交投影.取xH,则有

    R(F)⊆ R(Q),则$\overline {R(F)} $R(Q).

    Fx=0,则

    这也就有U*xN(G)=R(G),故PGU*x=0,因此Qx=UPGU*x=0.则N(F)⊆N(Q),即$\overline {R(F)} $R(Q),因此$\overline {R(F)} $=R(Q),则PF=Q=UPGU*.

    引理4  设V为部分等距算子,FGB(H)是自伴的.若V*VG=0且V*VF=F,则

      由于GV*V=(V*VG)*=0,故GF=GV*VF=0,因此PF+PG=PF+G.

    注意到V*VG=0,则R(PG)=$\overline {R(G)} $N(V),故VGV*=0及VPGV*=0成立.因此

    又由引理3知PVFV*=VPFV*,所以

    定理1  设EB(H)Id具有(1)式的形式,I1I2分别表示子空间R(E)与R(E)上的单位算子,则

      显然,${E^*}E = \left( {\begin{array}{*{20}{c}} {{I_1}}&{{E_1}}\\ {E_1^*}&{E_1^*{E_1}} \end{array}} \right)$R(E)⊕R(E)R(E)⊕R(E).

    由极分解定理,存在部分等距算子VB(R(E)R(E)),使得E1=V(E1*E1)${\frac{1}{2}}$R(V)=$\overline {R({E_1})} $R(V*)=$\overline {R(E_1^*)} $,则有

    容易验证

    因此,由引理4和引理1,我们有

    所以

    故由(5)式知

    又由于

    作为推论,我们可以得到文献[16]中的定理2:

    推论1  [16]EB(H)Id,则:

    (ⅰ) PN(E)-PEE+E*-I可逆,且(E+E*-I)-1=PE-PN(E)

    (ⅱ) E=PE(PE-PN(E))-1PN(E)=(E-I)(E+E*-I)-1成立.

      由于I1-E1(I2+E1*E1)-1E1*=I1-(I1+E1*E1)-1E1E1*=(I1+E1E1*)-1,则由定理1知

    显然,

    直接计算可得

    (ⅱ)显然PE=E(PE-PN(E))且PN(E)=(E-I)(PE-PN(E)),故由(1)式得

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return