Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 2
Article Contents

SONG Na, XIA Zheng-de. The Compound Theorem for Piecewise Double-Weighted Pseudo-almost Periodic Functions[J]. Journal of Southwest University Natural Science Edition, 2021, 43(2): 103-109. doi: 10.13718/j.cnki.xdzk.2021.02.014
Citation: SONG Na, XIA Zheng-de. The Compound Theorem for Piecewise Double-Weighted Pseudo-almost Periodic Functions[J]. Journal of Southwest University Natural Science Edition, 2021, 43(2): 103-109. doi: 10.13718/j.cnki.xdzk.2021.02.014

The Compound Theorem for Piecewise Double-Weighted Pseudo-almost Periodic Functions

More Information
  • Received Date: 07/04/2020
    Available Online: 20/02/2021
  • MSC: O29

  • In order to study the composition theorem of the piecewise double-weighted pseudo-almost periodic function, the composite functionis decomposed into the sum of the piecewise almost periodic function and the remaining part of it, and it is proved by translation invariancethat the remaining part after removing the piecewise almost periodic part should be a double weighted function. The composition theorem is further proved that the compounding of the two piecewise double weighted pseudo-almost periodic functions remains a piecewise double weighted pseudo-almost periodic function. The double-weighted pseudo-almost periodic sequence is introduced again, and the relationship between the double-weighted pseudo-almost periodic sequence and the piecewise double-weighted pseudo-almost periodic function is studied. Further, it is proved that the composite function of the double-weighted pseudo-almost periodic function and the double-weighted pseudo-almost periodic sequence is the double weighted pseudo-almost periodic sequence.
  • 加载中
  • [1] DIAGANA T. Weighted Pseudo Almost Periodic Functions and Applications[J]. Comp Rend Math, 2006, 343(10): 643-646. doi: 10.1016/j.crma.2006.10.008

    CrossRef Google Scholar

    [2] ZHANG L L, LI H X. Weighted Pseudo Almost Periodic Solutions of Second-Order Neutral-Delay Differential Equations with Piecewise Constant Argument[J]. Comput Math Appl, 2011, 62(12): 4362-4376. doi: 10.1016/j.camwa.2011.10.004

    CrossRef Google Scholar

    [3] NADIRA B H, EZZINBI K. Weighted Pseudo Almost Periodic Solutions for Some Partial Functional Differential Equations[J]. Nonlinear Anal, 2009, 71(3): 3612-3621.

    Google Scholar

    [4] CUEVAS C, PINTO M. Existence and Uniqueness of Pseudo-Almost Periodic Solutions of Semilinear Cauchy Problem with Non Dense Domain[J]. Nonlinear Anal, 2001, 45(1): 73-83. doi: 10.1016/S0362-546X(99)00330-2

    CrossRef Google Scholar

    [5] AGARWAL R P, ANDRADE B, CUEVAS C. Weighted Pseudo Almost Periodic Solutions of a Class of Semilinear Fractional Differential Equations[J]. Nonlinear Anal Real World Appl, 2010, 11(5): 3532-3554. doi: 10.1016/j.nonrwa.2010.01.002

    CrossRef Google Scholar

    [6] DIAGANA T. Pseudo Almost Periodic Functions in Banach Spaces[M]. New York: Nova Science Publishers, 2007.

    Google Scholar

    [7] ZHANG L L, LI H X. Weighted Pseudo-Almost Periodic Solutions for Some Abstract Differential Equations with Uniform Continuity[J]. Bull Aust Math Soc, 2010, 82(3): 424-436. doi: 10.1017/S0004972710001772

    CrossRef Google Scholar

    [8] ZHANG L L, LI H X. Weighted Pseudo Almost Periodic Solutions of Second Order Neutral Differential Equations with Piecewise Constant Argument[J]. Nonlinear Anal, 2011, 74(2): 6770-6780.

    Google Scholar

    [9] SHAIR A, GANI T S. On Almost Periodic Processes in Impulsive Competitive Systems with Delay and Impulsive Perturbations[J]. Nonlinear Anal Real World Appl, 2009, 10(5): 2857-2863. doi: 10.1016/j.nonrwa.2008.09.003

    CrossRef Google Scholar

    [10] DIAGANA T. Doubly-Weighted Pseudo-Almost Periodic Functions[J/OL]. African Diaspora Journal of Mathematics New, 2010, 14: 1-17.[2020-03-05]. https://arxiv.org/abs/1012.3043.

    Google Scholar

    [11] LIU J W, ZHANG C Y. Composition of Piecewise Pseudo Almost Periodic Functions and Applications to Abstract Impulsive Differential Equations[J]. Advance Differential Equation, 2013, 2013: 1-11. doi: 10.1186/1687-1847-2013-11

    CrossRef Google Scholar

    [12] SONG N, LI H X, CHEN C H. Piecewise Weighted Pseudo Almost Periodic Functions and Applications to Impulsive Differential Equations[J]. Math Slovaca, 2016, 66(5): 1-18.

    Google Scholar

    [13] 夏正德, 宋娜.分段双加权伪概周期函数及其分解唯一性[J].数学的实践与认识, 2019, 49(24): 231-236.

    Google Scholar

    [14] EDUARDO H M, MARCO R, HERNÁN R H. Existence of Solutions for Impulsive Partial Neutral Functional Differential Equations[J]. J Math Anal Appl, 2007, 331(2): 1135-1158. doi: 10.1016/j.jmaa.2006.09.043

    CrossRef Google Scholar

    [15] LIANG J, XIAO T J, ZHANG J. Decomposition of Weighted Pseudo-Almost Periodic Functions[J]. Nonlinear Anal, 2010, 73(10): 3456-3461. doi: 10.1016/j.na.2010.07.034

    CrossRef Google Scholar

    [16] DIAGANA T. Existence of Doubly-Weighted Pseudo Almost Periodic Solutions to Non-Autonomous Differential Equations[J]. Electron J Diff Equ, 2011, 28: 1-15.

    Google Scholar

    [17] LIU J W, ZHANG C Y. Existence and Stability of Almost Periodic Solutions for Impulsive Differential Equations[J]. Advance Differential Equation, 2012, 2012: 1-34.

    Google Scholar

    [18] STAMOV G T. On the Existence of Almost Periodic Solutions for the Impulsive Lasota-Wazewska Model[J]. Appl Math Lett, 2009, 22(4): 516-520. doi: 10.1016/j.aml.2008.07.002

    CrossRef Google Scholar

    [19] STAMOV G T, ALZABUT J O. Almost Periodic Solutions for Abstract Impulsive Differential Equations[J]. Nonlinear Anal, 2010, 72(5): 2457-2464. doi: 10.1016/j.na.2009.10.042

    CrossRef Google Scholar

    [20] CUEVAS C, HERNÁNDEZM E, RABELO M. The Existence of Solutions for Impulsive Neutral Functional Differential Equations[J]. Comput Math Appl, 2009, 58(4): 744-757. doi: 10.1016/j.camwa.2009.04.008

    CrossRef Google Scholar

    [21] SONG N, XIA Z D. Almost Periodic Solutions for Impulsive Lasota-Wazewska Model with Discontinuous Coefficients[J]. International Mathematical Forum, 2017, 12(17): 841-852.

    Google Scholar

    [22] SONG N, XIA Z D, HOU Q. The Study of Piecewise Weighted Pseudo Almost Periodic Solutions for Implusive Lasota-Wazewska Model with Discontinuous Coefficients[J]. Mathematica Slovaca, 2020, 70(2): 343-360. doi: 10.1515/ms-2017-0356

    CrossRef Google Scholar

    [23] 姚晓洁, 秦发金.一类具有脉冲和收获率的Lotla-Volterra合作系统的4个正概周期解[J].西南师范大学学报(自然科学版), 2016, 41(11): 7-14.

    Google Scholar

    [24] 王春生, 李永明.多变时滞Volterra型动力系统的稳定性[J].西南大学学报(自然科学版), 2019, 41(7): 62-69.

    Google Scholar

    [25] HERNÁN R H, ANDRADE B D, RABELO M. Existence of Almost Periodic Solutions for a Class of Abstract Impulsive Differential Equations[J]. ISRN Math, 2011, 2011: 1-21.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1959) PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

The Compound Theorem for Piecewise Double-Weighted Pseudo-almost Periodic Functions

Abstract: In order to study the composition theorem of the piecewise double-weighted pseudo-almost periodic function, the composite functionis decomposed into the sum of the piecewise almost periodic function and the remaining part of it, and it is proved by translation invariancethat the remaining part after removing the piecewise almost periodic part should be a double weighted function. The composition theorem is further proved that the compounding of the two piecewise double weighted pseudo-almost periodic functions remains a piecewise double weighted pseudo-almost periodic function. The double-weighted pseudo-almost periodic sequence is introduced again, and the relationship between the double-weighted pseudo-almost periodic sequence and the piecewise double-weighted pseudo-almost periodic function is studied. Further, it is proved that the composite function of the double-weighted pseudo-almost periodic function and the double-weighted pseudo-almost periodic sequence is the double weighted pseudo-almost periodic sequence.

  • 文献[1]推广了伪概周期函数,介绍了加权伪概周期函数及其相关性质.许多的工作都是围绕着微分方程的加权伪概周期解展开的[2-9].文献[10]给出了双加权伪概周期函数的概念,进一步推广了伪概周期函数.随着脉冲微分方程的发展,概周期理论得到进一步的发展,分段伪概周期函数、分段加权伪概周期函数与分段双加权伪概周期函数相继被提出[11-13].关于微分方程,数学工作者做了许多的工作[14-24].本文的工作是对分段双加权伪概周期函数[25]研究的延续,主要介绍了分段双加权伪概周期函数的复合定理,以及双加权伪概周期函数与双加权伪概周期序列之间的关系.

1.   分段双加权伪概周期函数
  • 现在介绍分段加权伪概周期函数的概念.首先定义集合U为加权函数全体{μ:ℝ→(0,∞)},则

    加权函数具有如文献[2]中定义的加权函数的相关性质,在此将不再赘述.对于ρυUS>0,fPCT(ℝ,X),定义

    分段双加权遍历空间PPAPT0(Xρυ)和PPAPT0(ΩXρυ),有如下定义:

    PPAPT0(Xρυ)在上确界范数下是Banach空间.分段双加权伪概周期函数空间为

    定理1  令fPPAPT(ΩXρυ)且hPPAPT(Ωρυ).假设下面的条件成立:

    (H1) $\rho \in U_T^0, v \in {U_\infty }, \mathop {\inf }\limits_{S > 0} \frac{{\mu (S, v)}}{{\mu (S, \rho )}} > 0, {\rm{且}}\mathop {\lim }\limits_{S > 0} \frac{{\mu (S, v)}}{{\mu (S, \rho )}} < \infty $

    (H2) f(t,·)对∀t∈ℝ在每个有界子集Ω上是一致连续的,即对∀ε>0和有界集KΩ,存在δ>0,使得当xyK且‖x-y‖<δ时,‖f(tx)-f(ty)‖<ε对∀t∈ℝ成立;

    (H3) f(ℝ,K)={f(tx):t∈ℝ,xK}对每个有界子集KΩ是有界的.

    R(h)⊂K,那么f(th(t))∈PPAPT(Xρυ).

      因为fPPAPT(ΩXρυ),hPPAPT(Ωρυ),所以f=fap+feh=hap+he.则函数f(·,h(·))可以做如下的分解:

    由于R(hap)在X上是相对紧的,则∀t∈ℝ,fap(t,·)在R(hap)上是一致连续的.由文献[11]的定理3.1,容易看出fap(·,hap(·))∈APT(ℝ,X).下面证明

    步骤1  证明f(·,h(·))-f(·,hap(·))∈PPAPT0(Xρυ).

    KΩ是有界的,使得R(h),R(hap)⊂K.由条件(H3),存在M>0使得

    同时,由条件(H2),对于ε>0,存在δ>0,使得当xyK且‖x-y‖<δ时,有

    因为hePPAPT0(Ωρυ),根据条件(H1),有

    其中

    因此存在MS0>0,使得当SS0时,有

    又因为

    所以

    由平移不变性可得,对SS0,有

    步骤2  证明fe(·,hap(·))∈PPAPT0(Xρυ).

    因为f=fap+fe,且当t∈ℝ时,fap(t,·)在R(hap)上是一致连续的.那么由条件(H2)可知,fe(tx)=f(tx)-fap(tx)关于txR(hap)上是一致连续的.即对于ε>0,存在δ>0,使得当xyR(hap)且‖x-y‖<δ时,有

    R(hap)在X上是相对紧的,则对ε>0,可以找到有限n个以x1x2,…,xnR(hap)为中心的开球Ok,使得$R\left( {{h^{ap}}} \right) \subset \bigcup\limits_{k = 1}^n {{O_k}} $

    集合Bk={t∈ℝ:hap(t)∈Ok}是开的,并且$R = \bigcup\limits_{k = 1}^n {{B_k}} $.令

    那么当ij,1≤ijn并且 $R = \bigcup\limits_{k = 1}^n {{E_k}} $ 时,EiEj=Ø.

    因为fe(·,xk)∈PPAPT0(ΩXρυ),所以存在S0>0,使得

    因此对于SS0,有

    fe(·,hap(·))∈PPAPT0(Xρυ).

2.   双加权伪概周期序列
  • Vs为序列(加权)σ:ℤ→(0,+∞)的集合.对于σVsT∈ℤ+,令

    定义1  令σ,ϑ∈Vs,序列{x(n)}:ℤ→X是有界的且满足

    那么序列{x(n)}被称为σ,ϑ-PAP0序列,我们用PAP0S(Xσ,ϑ)来标记.

    类似于文献[12]中引理2.1的证明,可以得到下面的引理:

    引理1  令σ,ϑ∈Vs.如果

    x:ℤ→X是有界的.对∀ε>0,S>0,S∈ℤ,定义

    xPAP0S(Xσ,ϑ)的充分必要条件是$\mathop {\lim }\limits_{S \to \infty } \frac{{{\mu _s}\left( {{M_{S, \varepsilon }}(x), \vartheta } \right)}}{{{\mu _s}(n, \sigma )}} = 0$.

    定义

    那么

    $\hat \sigma (j), \hat \vartheta (j)$的定义可看出:$\mathop {\lim }\limits_{n \to \infty } \frac{{\sum\limits_{i = - n}^n {\hat \vartheta } (i)}}{{\sum\limits_{i = - n}^n {\hat \sigma } (i)}} < \infty $的充分必要条件是$\mathop {\lim }\limits_{s \to \infty } \frac{{\int_{ - s}^s v (t){\rm{d}}t}}{{\int_{ - s}^s \rho (t){\rm{d}}t}} < \infty $.

    类似于文献[12]中引理2.6和定理2.5的证明,容易得到下面的两个引理:

    引理2  令uPPAPT0(Xρυ).那么

    引理3  序列{an}n∈ℤPAP0S(X$\hat \sigma , \hat \vartheta $)的充分必要条件是:存在aPPAPT0(Xρυ)∩UPCT(ℝ,X),使得a(tn)=ann∈ℤ.进一步,PAP0S(X$\hat \sigma , \hat \vartheta $)是平移不变的.

    定理2  令{Ii(x)}∈PAPS(X$\hat \sigma , \hat \vartheta $),xΩ.当u(ℝ)⊂Ω时,uPPAPT(Xρυ)∩UPCT(ℝ,X).如果下面的条件成立:

    (H4) {Ii(u):n∈ℤ,uK}在每个子集KΩ上是有界的;

    (H5)当i∈ℤ时,Ii(u)在uΩ处一致连续.

    那么{Ii(u(ti))}∈PAPS(X$\hat \sigma , \hat \vartheta $).

      类似于文献[12]中引理3.7的证明,容易证明{uap(ti)}∈APS(X).此外,由引理3可得{ue(ti)}∈PAP0S(X$\hat \sigma , \hat \vartheta $),所以{u(ti)}∈PAPS(X).根据文献[13]的引理3,当y1y2Ω时,有

    结合条件(H5)可得,当i∈ℤ时,Iiap(u)是关于uΩ一致连续的,且Iie(u)也是一致连续的.定义

    那么

    由文献[11]的定理3.4,容易看出{P1(i)}∈APS(X).所以下面只需要证明{P2(i)}∈PAP0S(X$\hat \sigma , \hat \vartheta $).

    注意到{u(ti)}和uap(ti)是有界的.令KΩ是有界的,使得u(ti),uap(ti)⊂Ki∈ℤ.由条件(H5),对∀ε>0,存在δ1>0使得

    容易看出K1={uap(ti):i∈ℤ}是相对紧的.因为当i∈ℤ时,IieuK1处是一致连续的.那么对ε>0,存在$0 < \delta < \max \left\{ {{\delta _1}, \frac{\varepsilon }{4}} \right\}$使得当y1y2K1且‖y1-y2‖<δ时,有

    由于K1是相对紧的,则存在x1,…,xmK1使得对每个i,有

    所以如果‖Iie(xk)‖<δ,那么

    因此,如果‖ue(ti)‖<δ且‖Iie(xk)‖<δk=1,2,…,m,那么

    此外,对于S>0,有

    因为{ue(ti)},{Iie(xk)}∈PAP0S(X$\hat \sigma , \hat \vartheta $),k=1,…,m,由文献[13]的引理1以及定理1,可得

    因此

    所以P2PAP0S(X$\hat \sigma , \hat \vartheta $).

Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return