Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 6
Article Contents

YUAN Yue, ZHAO Ping. Isolated Subsemigroups of the Semigroup $\mathscr{H} $(n, m)[J]. Journal of Southwest University Natural Science Edition, 2021, 43(6): 74-81. doi: 10.13718/j.cnki.xdzk.2021.06.010
Citation: YUAN Yue, ZHAO Ping. Isolated Subsemigroups of the Semigroup $\mathscr{H} $(n, m)[J]. Journal of Southwest University Natural Science Edition, 2021, 43(6): 74-81. doi: 10.13718/j.cnki.xdzk.2021.06.010

Isolated Subsemigroups of the Semigroup $\mathscr{H} $(n, m)

More Information
  • Corresponding author: ZHAO Ping
  • Received Date: 13/05/2020
    Available Online: 20/06/2021
  • MSC: O152.7

  • Let \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt be a full transformation semigroup on the finite set \lt i \gt X \lt sub \gt n \lt /sub \gt \lt /i \gt ={1, 2, …, \lt i \gt n \lt /i \gt }. For 1≤ \lt i \gt m \lt /i \gt ≤ \lt i \gt n \lt /i \gt -1, let \lt i \gt X \lt sub \gt m \lt /sub \gt \lt /i \gt ={1, 2, …, \lt i \gt m \lt /i \gt } and \lt i \gt X \lt sub \gt n-m \lt /sub \gt \lt /i \gt = \lt i \gt X \lt sub \gt n \lt /sub \gt \lt /i \gt \ \lt i \gt X \lt sub \gt m \lt /sub \gt \lt /i \gt . Let $ \begin{array}{l} {{\mathscr{T}}_{\left( {n, m} \right)}} = \left\{ {\alpha \in {{\mathscr{T}}_n}:{X_m}\alpha = {X_m}} \right\}\ \\{{\mathscr{H}}_{\left( {n, m} \right)}} = \left\{ {\alpha \in {{\mathscr{T}}_{\left( {n, m} \right)}}:{X_{n - m}}\alpha \subseteq {X_{n - m}}} \right\} \end{array} $ then both \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt and \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt are subsemigroups of the full transformation semigroup \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt and \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ⊆ \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . Let \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt be a subsemigroup of the semigroup \lt inline-formula \gt $\mathscr{S} $ \lt /inline-formula \gt , and if \lt i \gt α \lt sup \gt n \lt /sup \gt \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt implies \lt i \gt α \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt for all \lt i \gt α \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{S} $ \lt /inline-formula \gt and \lt i \gt n \lt /i \gt ∈ \lt inline-formula \gt $\mathbb{N} $ \lt /inline-formula \gt \lt sub \gt + \lt /sub \gt , then \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt is an isolated subsemigroup of the semigroup \lt inline-formula \gt $\mathscr{S} $ \lt /inline-formula \gt . In this paper, we consider the isolated subsemigroup \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt of the semigroup \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . As the isolated subsemigroup \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt can be expressed as a union of subsets containing idempotents, we can, by analyzing the relationship between the set \lt i \gt E \lt /i \gt ( \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt ) of the idempotents of \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt and the elements in the semigroup \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt , construct it according to its definition and the closure of the semigroup and calculate the idempotents and the generation elements of the idempotents. It is found that if \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt contains some idempotents in \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ( \lt i \gt n \lt /i \gt -2), then it can be concluded that the singular transformation semigroup Sing \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt must be included in \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt , and that \lt inline-formula \gt $\mathscr{G} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt must be included in \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt if \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt contains some elements at the top \lt inline-formula \gt $\mathscr{G} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt of the semigroup \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . The structural characteristics of the isolated subsemigroup \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt are deduced by discussing different cases of \lt i \gt E \lt /i \gt ( \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt ), and then the complete classification of the isolated subsemigroup of \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt is obtained.
  • 加载中
  • [1] 于晓丹, 孔祥智. Vague软Clifford半群[J]. 西南大学学报(自然科学版), 2020, 42(6): 46-53.

    Google Scholar

    [2] 张前滔, 赵平, 罗永贵. 半群TOPn(k)的格林(星)关系及富足性[J]. 西南师范大学学报(自然科学版), 2020, 45(6): 9-15.

    Google Scholar

    [3] YANG X L. Maximal Subsemigroups of the Finite Singular Transformation Semigroup[J]. Communications in Algebra, 2001, 29(3): 1175-1182. doi: 10.1081/AGB-100001675

    CrossRef Google Scholar

    [4] YOU T J. Maximal Regular Subsemigroups of Certain Semigroups of Transformations[J]. Semigroup Forum, 2002, 64(3): 391-396. doi: 10.1007/s002330010117

    CrossRef Google Scholar

    [5] YOU T J, YANG X L. A Classification of the Maximal Idempotent Generated Subsemigroups of Finite Singular Semigroups[J]. Semigroup Forum, 2002, 64(2): 236-242. doi: 10.1007/s002330010096

    CrossRef Google Scholar

    [6] YANG H B, YANG X L. Maximal Subsemigroups of Finite Transformation Semigroups K(n, r)[J]. Acta Mathematica Sinica, 2004, 20(3): 475-482. doi: 10.1007/s10114-004-0367-6

    CrossRef Google Scholar

    [7] YANG X L, YANG H B. Maximal Regular Subsemibands of Singn [J]. Semigroup Forum, 2006, 72(1): 75-93. doi: 10.1007/s00233-005-0103-2

    CrossRef Google Scholar

    [8] ZHAO P, BO X, MEI Y. Locally Maximal Idempotent Generated Subsemigroups of Singular Orientation-Preserving Transformation Semigroups[J]. Semigroup Forum, 2008, 77(2): 187-195. doi: 10.1007/s00233-008-9086-0

    CrossRef Google Scholar

    [9] ZHAO P. A Classification of Maximal Idempotent Generated Subsemigroups of Singular Orientation-Preserving Transformation Semigroups[J]. Semigroup Forum, 2009, 79(2): 377-384. doi: 10.1007/s00233-009-9161-1

    CrossRef Google Scholar

    [10] ZHAO P. Maximal Regular Subsemibands of SOPn [J]. Semigroup Forum, 2010, 80(3): 477-483. doi: 10.1007/s00233-010-9217-2

    CrossRef Google Scholar

    [11] ZHAO P, HU H B, YOU T J. A Note on Maximal Regular Subsemigroups of the Finite Transformation Semigroups $\mathscr{T} $ (n, r) [J]. Semigroup Forum, 2014, 88(2): 324-332. doi: 10.1007/s00233-013-9523-6

    CrossRef $\mathscr{T} $ (n, r)" target="_blank">Google Scholar

    [12] ZHAO P, HU H B. Locally Maximal Regular Subsemibands of the Finite Transformation Semigroups $\mathscr{T} $ (n, r) [J]. Semigroup Forum, 2019, 98(1): 172-183. doi: 10.1007/s00233-018-9981-y

    CrossRef $\mathscr{T} $ (n, r)" target="_blank">Google Scholar

    [13] 袁月, 赵平. 半群$\mathscr{H} $(n, m)*(r) 的极大子半群与极大正则子半群[J]. 山东大学学报(理学版), 2020, 55(12): 19-24.

    Google Scholar

    [14] GANYUSHKIN O, MAZORCHUK V. Classical Finite Transformation Semigroups: an Introduction[M]. London: Springer, 2009.

    Google Scholar

    [15] TOKER K, AYIK H. On the Rank of Transformation Semigroup $\mathscr{T} $(n, m)[J]. Turk J Math, 2018, 42(4): 1970-1977. doi: 10.3906/mat-1710-59

    CrossRef $\mathscr{T} $(n, m)" target="_blank">Google Scholar

    [16] HOWIE J M. Fundamentals of Semigroup Theory[M]. Oxford: Oxford Press, 1995: 1-154.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(995) PDF downloads(479) Cited by(0)

Access History

Other Articles By Authors

Isolated Subsemigroups of the Semigroup $\mathscr{H} $(n, m)

    Corresponding author: ZHAO Ping

Abstract: Let \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt be a full transformation semigroup on the finite set \lt i \gt X \lt sub \gt n \lt /sub \gt \lt /i \gt ={1, 2, …, \lt i \gt n \lt /i \gt }. For 1≤ \lt i \gt m \lt /i \gt ≤ \lt i \gt n \lt /i \gt -1, let \lt i \gt X \lt sub \gt m \lt /sub \gt \lt /i \gt ={1, 2, …, \lt i \gt m \lt /i \gt } and \lt i \gt X \lt sub \gt n-m \lt /sub \gt \lt /i \gt = \lt i \gt X \lt sub \gt n \lt /sub \gt \lt /i \gt \ \lt i \gt X \lt sub \gt m \lt /sub \gt \lt /i \gt . Let $ \begin{array}{l} {{\mathscr{T}}_{\left( {n, m} \right)}} = \left\{ {\alpha \in {{\mathscr{T}}_n}:{X_m}\alpha = {X_m}} \right\}\ \\{{\mathscr{H}}_{\left( {n, m} \right)}} = \left\{ {\alpha \in {{\mathscr{T}}_{\left( {n, m} \right)}}:{X_{n - m}}\alpha \subseteq {X_{n - m}}} \right\} \end{array} $ then both \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt and \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt are subsemigroups of the full transformation semigroup \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt and \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ⊆ \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . Let \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt be a subsemigroup of the semigroup \lt inline-formula \gt $\mathscr{S} $ \lt /inline-formula \gt , and if \lt i \gt α \lt sup \gt n \lt /sup \gt \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt implies \lt i \gt α \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt for all \lt i \gt α \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{S} $ \lt /inline-formula \gt and \lt i \gt n \lt /i \gt ∈ \lt inline-formula \gt $\mathbb{N} $ \lt /inline-formula \gt \lt sub \gt + \lt /sub \gt , then \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt is an isolated subsemigroup of the semigroup \lt inline-formula \gt $\mathscr{S} $ \lt /inline-formula \gt . In this paper, we consider the isolated subsemigroup \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt of the semigroup \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . As the isolated subsemigroup \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt can be expressed as a union of subsets containing idempotents, we can, by analyzing the relationship between the set \lt i \gt E \lt /i \gt ( \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt ) of the idempotents of \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt and the elements in the semigroup \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt , construct it according to its definition and the closure of the semigroup and calculate the idempotents and the generation elements of the idempotents. It is found that if \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt contains some idempotents in \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ( \lt i \gt n \lt /i \gt -2), then it can be concluded that the singular transformation semigroup Sing \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt must be included in \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt , and that \lt inline-formula \gt $\mathscr{G} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt must be included in \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt if \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt contains some elements at the top \lt inline-formula \gt $\mathscr{G} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt of the semigroup \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . The structural characteristics of the isolated subsemigroup \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt are deduced by discussing different cases of \lt i \gt E \lt /i \gt ( \lt inline-formula \gt $\mathscr{T} $ \lt /inline-formula \gt ), and then the complete classification of the isolated subsemigroup of \lt inline-formula \gt $\mathscr{H} $ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt is obtained.

  • $\mathscr{S} $n$\mathscr{T} $n分别是有限集Xn={1,2,…,n}上的对称群和全变换半群. 对1≤mn-1,记Xm={1,2,…,m}且Xn-m=Xn\Xm. 令

    则易证得$\mathscr{G} $(nm)$\mathscr{H} $(nm)$\mathscr{T} $(nm)都是全变换半群$\mathscr{T} $n的子半群,且$\mathscr{G} $(nm)$\mathscr{H} $(nm)$\mathscr{T} $(nm).

    $\mathscr{T} $是半群$\mathscr{S} $的子半群,如果对任意α$\mathscr{S} $n$\mathbb{N} $+,由αn$\mathscr{T} $可推出α$\mathscr{T} $,则称$\mathscr{T} $$\mathscr{S} $的独立子半群. 半群理论是群理论的一般推广,变换半群的结构及其子结构同群的结构一样重要,目前已有许多研究成果[1-13]. 在变换半群理论中,对半群的结构的研究十分广泛,其中变换半群的极大正则子半群和极大子半群的研究一直都是热点问题,研究成果十分丰富[3-13]. 独立子半群作为一类特别的子半群,由于其构造存在一定的难度,目前对变换半群的独立子半群的研究比较少,仅有少数半群能够得到其独立子半群的完全分类. 文献[14]得到了:半群$\mathscr{S} $的子半群$\mathscr{T} $的补集$\overline{\mathscr{T}} $ = $\mathscr{S} $\ $\mathscr{T} $如果仍为$\mathscr{S} $的子半群,则$\mathscr{T} $$\overline{\mathscr{T}} $都是$\mathscr{S} $的独立子半群,且半群$\mathscr{S} $本身为自己的独立子半群. 文献[14]还刻画了全变换半群的独立子半群的完全分类. 文献[15]通过研究$\mathscr{T} $(nm)的子半群$\mathscr{G} $(nm)的生成集与秩,得到了$\mathscr{T} $(nm)的生成集与秩. 本文将研究半群$\mathscr{T} $(nm)的子半群$\mathscr{H} $(nm),并得到半群$\mathscr{H} $(nm)的独立子半群的完全分类.

    S是半群$\mathscr{H} $(nm)的子集. 通常,用E(S)表示S中的所有幂等元组成的集合. 本文未定义的术语及符号请参见文献[16].

    为了叙述上的方便,在$\mathscr{H} $(nm)上引入以下的二元关系:对任意αβ$\mathscr{H} $(nm),定义

    $\mathscr{L} $$\mathscr{R} $$\mathscr{J} $$\mathscr{H} $都是$\mathscr{H} $(nm)上的等价关系.

    易得$\mathscr{L} $$\mathscr{J} $$\mathscr{R} $$\mathscr{J} $$\mathscr{H} $= $\mathscr{R} $$\mathscr{L} $. 对r$\mathbb{N} $+且2≤m+1≤rn,记

    $\mathscr{J} $-类$\mathscr{J} $n$\mathscr{J} $n-1,…,$\mathscr{J} $m+1恰好是$\mathscr{H} $(nm)n-m$\mathscr{J} $-类. 显然$\mathscr{G} $(nm)= $\mathscr{J} $n.

    约定:设1≤mn-1,令$\mathscr{S} $n-m$\mathscr{T} $n-m分别表示Xn-m上的对称群和全变换半群,$\mathscr{S} $m表示Xm上的对称群.

    引理 1  设1≤mn-3,则$\mathscr{H} $(nm)= 〈$\mathscr{G} $(nm)$\left( {\begin{array}{*{20}{c}} {m + 1}\\ {m + 2} \end{array}} \right)$〉.

    证  由文献[15]可知

    m=1时,显然$\mathscr{H} $(n,1)$\mathscr{T} $n-1,则$\mathscr{H} $(n,1)= 〈 (23),(23…n),$\left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right)$〉 = 〈 $\mathscr{G} $(n,1),$\left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right)$ 〉.

    当2≤mn-3时,任意取α$\mathscr{H} $(nm),定义βαλα$\mathscr{T} $n

    显然βαλα$\mathscr{H} $(nm)βα$\mathscr{G} $(nm). 任意取iXn,若1≤im,则α=Xm,于是()αm,从而i(βαλα)=(α)λα=()λα=;若m+1≤in,则由α$\mathscr{H} $(nm)可得α=iXn-mm,从而i(βαλα)=(α)λα=α=. 因此α=βαλα. 易知

    从而α=βαλα∈ 〈 $\mathscr{G} $(nm)$\left( {\begin{array}{*{20}{c}} {m + 1}\\ {m + 2} \end{array}} \right)$ 〉. 由α的任意性可得$\mathscr{H} $(nm)⊆〈 $\mathscr{G} $(nm)$\left( {\begin{array}{*{20}{c}} {m + 1}\\ {m + 2} \end{array}} \right)$〉. 再由$\mathscr{H} $(nm)的定义知,$\mathscr{G} $(nm)$\mathscr{H} $(nm)$\left( {\begin{array}{*{20}{c}} {m + 1}\\ {m + 2} \end{array}} \right)$$\mathscr{H} $(nm),则〈 $\mathscr{G} $(nm)$\left( {\begin{array}{*{20}{c}} {m + 1}\\ {m + 2} \end{array}} \right)$〉 ⊆$\mathscr{H} $(nm),从而$\mathscr{H} $(nm)= 〈 $\mathscr{G} $(nm)$\left( {\begin{array}{*{20}{c}} {m + 1}\\ {m + 2} \end{array}} \right)$ 〉.

    为方便起见,我们用符号$\left[ {\begin{array}{*{20}{c}} {{A_1}}& \cdots &{{A_r}}\\ {{a_1}}& \cdots &{{a_r}} \end{array}} \right]$表示半群$\mathscr{H} $(nm)中满足如下条件的元素α

    引理 2  设1≤mn-3,任意取α$\mathscr{J} $n-1,则$\mathscr{H} $(nm)=〈 $\mathscr{G} $(nm)α〉.

      设

    其中Xm={a1a2,…,am}且{am+1am+2,…,an}⊂Xn-m. 令

    μα$\mathscr{G} $(nm),且

    于是α*=αμα∈〈 $\mathscr{G} $(nm)α〉,且

    从而

    再由引理1可得$\mathscr{H} $(nm)=〈 $\mathscr{G} $(nm)α〉.

    引理 3  设1≤mn-3,$\mathscr{T} $是半群$\mathscr{H} $(nm)的独立子半群. 若E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)≠Ø,则E($\mathscr{T} $)∩ $\mathscr{J} $m+1Ø.

      令k=min{|im(ε)|:εE($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)},则m+1≤kn-2. 假设m+2≤kn-2. 任意取

    其中Xn-m=Am+1Am+2∪…∪Ak,且aiAi(m+1≤ik). 由|im(ε)|=kn-2可知,存在t∈{m+1,m+2,…,k},使得|At|≥3,或者存在pq∈{m+1,m+2,…,k}且pq,使得|Ap|=|Aq|=2. 以下分两种情形:

    情形1  |At|≥3. 取bcAt\{at}且bc. 令

    α2=β2=ε,从而αβ$\mathscr{T} $. 由|im(ε)|=km+2可知,存在i∈{m+1,m+2,…,k},使得AiAt=Ø. 不失一般性,不妨设it. 令

    则(α*)2=αβ$\mathscr{T} $且(β*)2=βα$\mathscr{T} $,从而α*β*$\mathscr{T} $. 易验证

    显然α*β*αE($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2),且|im(α*β*α)|=k-1,与k的极小性矛盾.

    情形2  |Ap|=|Aq|=2. 设Ap={apap*}且Aq={aqaq*},其中ajaj*j=pq. 令

    α2=β2=ε,从而αβ$\mathscr{T} $,因此αββα$\mathscr{T} $. 令

    则(α*)2=(γ*)3=βα$\mathscr{T} $,(β*)2=αβ$\mathscr{T} $,从而α*β*γ*$\mathscr{T} $. 易验证

    显然(α*β*γ*)2E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2),且|im((α*β*γ*)2)|=k-1,与k的极小性矛盾.

    综上所述,k=m+1. 因此E($\mathscr{T} $)∩ $\mathscr{J} $m+1Ø.

    引理 4  设1≤mn-3,$\mathscr{T} $是半群$\mathscr{H} $(nm)的独立子半群. 若E($\mathscr{T} $)∩ $\mathscr{J} $m+1Ø,则$\mathscr{J} $m+1$\mathscr{T} $.

      任意取

    其中Xm={a1a2,…,am}且aXn-m,则显然存在t$\mathbb{N} $+,使得αt=$\left[ {\begin{array}{*{20}{c}} {{X_{n - m}}}\\ a \end{array}} \right]$. 任意取

    其中bXn-m. 若a=b,则αt=ε$\mathscr{T} $,从而α$\mathscr{T} $;若ab,令

    其中abcXn-mabc互不相同,则β2=γ2=ε,从而βγ$\mathscr{T} $. 令

    从而η$\mathscr{T} $. 易验证αt=εη$\mathscr{T} $,从而α$\mathscr{T} $. 由α的任意性可得$\mathscr{J} $m+1$\mathscr{T} $.

    r$\mathbb{N} $+且2≤m+1≤rn,记

    $\mathscr{H} $(nm)(r)是$\mathscr{H} $(nm)的理想,且Sing(nm)= $\mathscr{H} $(nm)(n-1).

    引理 5  设1≤mn-2,$\mathscr{T} $是半群$\mathscr{H} $(nm)的独立子半群. 若$\mathscr{J} $m+1$\mathscr{T} $,则Sing(nm)$\mathscr{T} $.

      当m=n-2时,结论显然成立. 假设1≤mn-3. 任意取εE($\mathscr{J} $r )(m+1≤rn-1),假设

    其中Xn-m=Am+1Am+2∪…∪AraiAi(m+1≤ir). 由rn-1可知,存在t∈{m+1,m+2,…,r},使得|At|≥2. 不失一般性,不妨设|Am+1|≥2. 若r=m+1,显然ε$\mathscr{J} $m+1$\mathscr{T} $;若m+2≤rn-1,设

    其中1≤sr-m-1,am+1*Am+1\{am+1},则显然ε=α1β1,且

    易验证αsβs=γs-1. 注意到

    $\mathscr{T} $是独立子半群,易得αsβsγs$\mathscr{T} $ (1≤sr-m-1),从而ε=α1β1$\mathscr{T} $. 由ε的任意性可知,E($\mathscr{J} $r)⊆$\mathscr{T} $m+1≤rn-1. 现在,任意取α∈Sing(nm),则|im(α)|≤n-1. 由半群$\mathscr{H} $(nm)的有限性可知,存在t$\mathbb{N} $+m+1≤rn-1,使得αtE($\mathscr{J} $r ). 由E($\mathscr{J} $r)⊆$\mathscr{T} $可得αt$\mathscr{T} $,从而α$\mathscr{T} $. 由α的任意性可得Sing(nm)$\mathscr{T} $.

    由半群$\mathscr{H} $(nm)的定义知$\mathscr{J} $n-1中的幂等元为如下形式:

    任意取λ(tk)E($\mathscr{J} $n-1),令

    $\mathscr{H} $λ(tk)$\mathscr{H} $(nm)中包含幂等元λ(tk)$\mathscr{H} $-类,则

    易证得$\mathscr{H} $λ(tk)是半群$\mathscr{H} $(nm)的(有限)子群.

    引理 6  设1≤mn-2,λ(tk)E($\mathscr{J} $n-1),则$\sqrt {{\lambda _{\left( {t, k} \right)}}} $ = $\mathscr{H} $λ(tk).

      任意取α$\sqrt {{\lambda _{\left( {t, k} \right)}}} $,则存在i$\mathbb{N} $+,使得αi=λ(tk). 显然n-1=|im(λ(tk))|≤|im(α)|. 若|im(α)|=n,则αXn上的置换,从而|im(λ(tk))|=|im(αi)|=n,与λ(tk)E($\mathscr{J} $n-1)矛盾. 因此,|im(α)|=n-1. 由|im(α)|=|im(λ(tk))|=n-1及im(λ(tk))=im(αi)⊆im(α)可得im(α)=im(λ(tk)). 显然{tk}是λ(tk)唯一的非单点核类. 若,则由|im(α)|=n-1可知,存在uvXn且{uv}≠{tk},使得=,从而(tk)=i=i=(tk),与{tk}是λ(tk)唯一的非单点核类矛盾. 因此,=. 再由|im(α)|=n-1可得ker(α)=ker(λ(tk)). 由α的任意性可得$\sqrt {{\lambda _{\left( {t, k} \right)}}} $$\mathscr{H} $λ(tk). 任意取α$\mathscr{H} $λ(tk),则由$\mathscr{H} $λ(tk)$\mathscr{H} $(nm)的有限子群且|im(α)|=n-1可知,存在i$\mathbb{N} $+,使得αi=λ(tk),从而α$\sqrt {{\lambda _{\left( {t, k} \right)}}} $. 由α的任意性可得$\mathscr{H} $λ(tk)$\sqrt {{\lambda _{\left( {t, k} \right)}}} $. 因此$\sqrt {{\lambda _{\left( {t, k} \right)}}} $= $\mathscr{H} $λ(tk).

    引理 7  设1≤mn-3,且$\mathscr{S} $ = $\sqrt {{\lambda _{\left( {t, k} \right)}}} $$\sqrt {{\lambda _{\left( {k, t} \right)}}} $,其中tkXn-mtk,则$\mathscr{S} $是半群$\mathscr{H} $(nm)的独立子半群.

      由引理6可知$\sqrt {{\lambda _{\left( {t, k} \right)}}} $ = $\mathscr{H} $λ(tk)$\sqrt {{\lambda _{\left( {k, t} \right)}}} $ = $\mathscr{H} $λ(kt),从而$\mathscr{S} $$\mathscr{H} $(nm)的两个子群的并集. 任取α$\sqrt {{\lambda _{\left( {t, k} \right)}}} $β$\sqrt {{\lambda _{\left( {k, t} \right)}}} $,则ker(α)=ker(λ(tk))=ker(λ(kt))=ker(β),且im(α)=im(λ(tk))=Xn\{t}. 进而易得ker(αβ)=ker(α)=ker(β)=ker(λ(kt)),且im(αβ)=im(β)=im(λ(kt)),则αβ$\mathscr{H} $λ(kt) = $\sqrt {{\lambda _{\left( {k, t} \right)}}} $$\mathscr{S} $. 同理可得βα$\mathscr{H} $λ(tk) = $\sqrt {{\lambda _{\left( {t, k} \right)}}} $$\mathscr{S} $. 从而易证得$\mathscr{S} $$\mathscr{H} $(nm)的子半群. 假设存在η$\mathscr{H} $(nm)\ $\mathscr{S} $,且n$\mathbb{N} $+,使得ηn$\mathscr{S} $,则由$\mathscr{S} $$\mathscr{H} $(nm)的子半群且$\mathscr{H} $(nm)为有限半群可知,存在t$\mathbb{N} $+ε∈{λ(kt)λ(tk)},使得(ηn)t=ηnt=ε$\mathscr{S} $,则η$\mathscr{S} $,与假设矛盾. 因此,$\mathscr{S} $是半群$\mathscr{H} $(nm)的独立子半群.

    引理 8  设1≤mn-3且$\mathscr{S} $ =$\bigcup\limits_{k \in M} {\sqrt {{\lambda _{\left( {t, k} \right)}}} } $,其中tXn-mØMXn-m\{t},则$\mathscr{S} $是半群$\mathscr{H} $(nm)的独立子半群.

      由引理6可知,$\sqrt {{\lambda _{\left( {t, k} \right)}}} $ = $\mathscr{H} $λ(tk)kM,从而$\mathscr{S} $$\mathscr{H} $(nm)的一些子群的并集. 注意到im(λ(tk))=Xn-m\{t}. 任取k1k2M,对α$\sqrt {{\lambda _{\left( {t, {k_1}} \right)}}} $β$\sqrt {{\lambda _{\left( {t, {k_2}} \right)}}} $,显然im(α)=Xn-m\{t}=im(β),ker(α)=ker(λ(tk1))且ker(β)=ker(λ(tk2)). 进而易得ker(αβ)=ker(α)=ker(λ(tk1)),且im(αβ)=im(β)=im(α)=im(λ(tk1)),则αβ$\mathscr{H} $λ(tk1) = $\sqrt {{\lambda _{\left( {t, {k_1}} \right)}}} $$\mathscr{S} $. 同理可得βα$\mathscr{H} $λ(tk2) = $\sqrt {{\lambda _{\left( {t, {k_2}} \right)}}} $$\mathscr{S} $. 从而易证得$\mathscr{S} $$\mathscr{H} $(nm)的子半群. 假设存在η$\mathscr{H} $(nm)\ $\mathscr{S} $n$\mathbb{N} $+,使得ηn$\mathscr{S} $. 由$\mathscr{S} $$\mathscr{H} $(nm)的子半群且$\mathscr{H} $(nm)为有限半群可知,存在t$\mathbb{N} $+ε$\bigcup\limits_{k \in M} {\left\{ {{\lambda _{\left( {t, k} \right)}}} \right\}} $,使得(ηn)t=ηnt=ε$\mathscr{S} $,则η$\mathscr{S} $,与假设矛盾. 因此,$\mathscr{S} $是半群$\mathscr{H} $(nm)的独立子半群.

    引理 9  设1≤mn-3,$\mathscr{T} $是半群$\mathscr{H} $(nm)的独立子半群,若$\mathscr{T} $$\mathscr{G} $(nm)Ø,则$\mathscr{G} $(nm)$\mathscr{T} $.

      由$\mathscr{T} $$\mathscr{G} $(nm)Ø可知,存在α$\mathscr{T} $$\mathscr{G} $(nm),于是1Xn=αn!$\mathscr{T} $,其中1XnXn上的恒等变换. 任取β$\mathscr{G} $(nm),则βn!=1Xn$\mathscr{T} $,从而β$\mathscr{T} $. 由β的任意性可得$\mathscr{G} $(nm)$\mathscr{T} $.

    引理 10[14]  设$\mathscr{S} $是有限半群. 若$\mathscr{T} $$\mathscr{S} $的独立子半群,则$\mathscr{T} $ =$\bigcup\limits_{\varepsilon \in E\left( \mathscr{T} \right)} {\sqrt \varepsilon } $.

    定理 1  设1≤mn-3,则半群$\mathscr{H} $(nm)的独立子半群有且仅有以下5类:

    (i) $\mathscr{H} $(nm)

    (ii) $\mathscr{G} $(nm)

    (iii) Sing(nm)

    (iv) $\sqrt {{\lambda _{\left( {t, k} \right)}}} $$\sqrt {{\lambda _{\left( {k, t} \right)}}} $,其中tkXn-mtk

    (v) $\bigcup\limits_{k \in M} {\sqrt {{\lambda _{\left( {t, k} \right)}}} } $,其中tXn-mØMXn-m\{t}.

      注意到$\mathscr{G} $(nm),Sing(nm)都是半群$\mathscr{H} $(nm)的子半群,$\mathscr{G} $(nm)∩Sing(nm)=Ø$\mathscr{H} $(nm)= $\mathscr{G} $(nm)∪Sing(nm),则由文献[14]可知,$\mathscr{G} $(nm),Sing(nm)$\mathscr{H} $(nm)都是半群$\mathscr{H} $(nm)的独立子半群. 由引理7、引理8可知,类型(iv),(v)都是半群$\mathscr{H} $(nm)的独立子半群.

    反之,由引理7、引理8可知,类型(iv),(v)都是半群$\mathscr{H} $(nm)的子半群. 注意到$\mathscr{G} $(nm),Sing(nm)都是半群$\mathscr{H} $(nm)的子半群,且$\mathscr{H} $(nm)= $\mathscr{G} $(nm)∪Sing(nm). 设$\mathscr{T} $是半群$\mathscr{H} $(nm)的独立子半群,则由引理10可得$\mathscr{T} $ =$\bigcup\limits_{\varepsilon \in E\left( \mathscr{T} \right)} {\sqrt \varepsilon } $. 以下分3种情形讨论:

    情形 1  E($\mathscr{T} $)∩ $\mathscr{G} $(nm)ØE($\mathscr{T} $)∩Sing(nm)=Ø. 由引理9可得$\mathscr{G} $(nm)$\mathscr{T} $. 我们断言$\mathscr{T} $ ∩Sing(nm)=Ø. 假设α$\mathscr{T} $ ∩Sing(nm),则存在n$\mathbb{N} $+,使得αnE($\mathscr{T} $)∩Sing(nm),与E($\mathscr{T} $)∩Sing(nm)=Ø矛盾. 因此$\mathscr{T} $ = $\mathscr{G} $(nm).

    情形 2  E($\mathscr{T} $)∩ $\mathscr{G} $(nm)ØE($\mathscr{T} $)∩Sing(nm)Ø. 由引理9可得$\mathscr{G} $(nm)$\mathscr{T} $. 注意到Sing(nm)= $\mathscr{J} $n-1$\mathscr{H} $(nm)(n-2). 以下分子情形讨论:

    情形 2.1  E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)≠Ø. 由引理3、引理4、引理5可得Sing(nm)$\mathscr{T} $,从而$\mathscr{T} $ = $\mathscr{H} $(nm).

    情形 2.2  E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)=Ø. 由E($\mathscr{T} $)∩Sing(nm)Ø可得E($\mathscr{T} $)∩ $\mathscr{J} $n-1Ø. 由引理2可得$\mathscr{T} $ = $\mathscr{H} $(nm).

    情形 3  E($\mathscr{T} $)∩ $\mathscr{G} $(nm)=ØE($\mathscr{T} $)∩Sing(nm)Ø. 考虑到Sing(nm)= $\mathscr{J} $n-1$\mathscr{H} $(nm)(n-2). 以下分子情形讨论:

    情形 3.1  E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)≠Ø. 由引理3、引理4、引理5可得Sing(nm)$\mathscr{T} $,从而$\mathscr{T} $ =Sing(nm).

    情形 3.2  E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)=Ø. 显然E($\mathscr{T} $)∩ $\mathscr{J} $n-1Ø. 注意到E($\mathscr{J} $n-1)={λ(tk)tkXn-mtk}. 令

    假设|Γ$\mathscr{T} $ |≥3,则存在t1t2t3k1k2k3Xn-mtiki(1≤i≤3)且t1t2t3互不相同,使得λ(t1k1)λ(t2k2)λ(t3k3)E($\mathscr{T} $). 显然存在i∈{2,3},使得t1ki. 若ti=k1,则k1ki,从而

    这与E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)=Ø矛盾. 若tik1ki=k1,则

    这与E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)=Ø矛盾. 若tik1kik1,则

    这与E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)=Ø矛盾. 综上所述,1≤|Γ$\mathscr{T} $ |≤2. 若|Γ$\mathscr{T} $|=1,则存在tXn-m,使得Γ$\mathscr{T} $ ={t}. 再由Γ$\mathscr{T} $的定义可知,存在ØMXn-m\{t},使得E($\mathscr{T} $)=$\bigcup\limits_{k \in M} {\left\{ {{\lambda _{\left( {t, k} \right)}}} \right\}} $,从而

    若|Γ$\mathscr{T} $ |=2,则存在tkXn-mtk,使得Γ$\mathscr{T} $ ={kt}. 由Γ$\mathscr{T} $的定义可知,存在ØMXn-m\{t},ØNXn-m\{k},使得E($\mathscr{T} $)=$\bigcup\limits_{m \in M} {\left\{ {{\lambda _{\left( {t, m} \right)}}} \right\}} $. 由E($\mathscr{T} $)∩ $\mathscr{H} $(nm)(n-2)=Ø可得λ(tm)λ(kn)λ(kn)λ(tm)$\mathscr{J} $n-1,从而t∈{kn}且k∈{tm}. 注意到tk,则t=nk=m. 由mn的任意性可得,M={k}且N={t},于是E($\mathscr{T} $)=$\bigcup\limits_{m \in M} {\left\{ {{\lambda _{\left( {t, m} \right)}}} \right\}} $$\bigcup\limits_{n \in M} {\left\{ {{\lambda _{\left( {t, n} \right)}}} \right\}} $={λ(tk)}∪{λ(kt)},从而

    注 1  易知半群$\mathscr{H} $(nn-1)唯一的独立子半群是它本身,$\mathscr{H} $(nn-2)的所有独立子半群为半群$\mathscr{H} $(nn-2)$\mathscr{G} $(nn-2),Sing(nn-2),{λ(m+1,m+2)}和{λ(m+2,m+1)}.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return