-
考虑如下非线性Neumann问题:
其中Ω⊂
$\mathbb{R} $ N(N≥3)是边界光滑的有界域,λ是正参数,Q(x)是Ω上满足
的连续变号函数,其中Ω1={x:Q(x)≥0},Ω2={x:Q(x)<0}. f:Ω ×
$\mathbb{R} $ →$\mathbb{R} $ 满足以下条件:(f1) 存在常数a>0和0<σ<1,使得对任意(x,s)∈Ω×
$\mathbb{R} $ ,|f(x,s)|≤a|s|σ;(f2)
$\mathop {\lim }\limits_{s \to 0} \frac{{f\left( {x, s} \right)}}{s}$ =∞对x∈Ω一致成立.近年来,对具有Neumann边界的椭圆型偏微分方程的研究引起了许多学者的注意,也获得了一些新的成果(见文献[1-10]). 此外,文献[11]研究了如下带有变号位势的Neumann问题:
其中Ω是
$\mathbb{R} $ N中光滑的有界域,p>1,a(x)是Ω上变号的连续函数,并利用约束最大化方法探讨了半线性椭圆型问题正解的存在性.文献[12]研究了以下问题:
其中Ω⊂
$\mathbb{R} $ N为具有光滑边界的有界域,∫ΩQ(x)dx<0. 众所周知,与在H01(Ω)空间上讨论的Direchlet边值问题不同,在H1(Ω)空间上,范数∫Ω(|▽u|2+u2)dx与∫Ω|▽u|2dx不等价. 因此,文献[10]通过空间分解和山路引理等临界点理论证明了该方程解的存在性. 随后,文献[13-15]对类似的Neumann问题进行了研究并推广到一些情形. 受上述研究的启发,本文讨论此类带有变指数增长的问题(1)的可解性.问题(1)对应的泛函为
其中u∈H1(Ω),
由文献[10]知,H1(Ω)可作直和分解
其中
对u∈H1(Ω),有u=t+v,其中v∈V,
在H1(Ω)上,定义等价范数‖u‖V2=t2+‖▽v‖22. 类似文献[11],有如下引理:
引理 1 假设
$\int_\mathit{\Omega } {\frac{{Q\left( x \right)}}{{p\left( x \right)}}} {\rm{d}}x$ <0,则存在η>0,使得对∀t∈$\mathbb{R} $ ,v∈V,当时,有
证 若不然,则对∀n∈ N,存在tn∈
$\mathbb{R} $ ,vn∈V,使得当时,有
或
令ωn=|tn|-1vn,由∫Ω|▽vn|2dx
$\frac{1}{2}$ ≤$\frac{1}{n}$ |tn|知,当n→∞时,在L2(Ω)上▽ωn→0. 由嵌入定理知,当n→∞时,在Lp-(Ω)和Lp+(Ω)上ωn→0.当|tn|≥1时,对∀x∈Ω,1≤|tn|p(x)-p-≤|tn|p+-p-. (3)式两边同时除以|tn|p-,注意到
$\int_\mathit{\Omega } {\frac{{Q\left( x \right)}}{{p\left( x \right)}}} {\rm{d}}x$ <0,可得由ωn在Lp-(Ω)和Lp+(Ω)上均趋于0知
此与
$\int_\mathit{\Omega } {\frac{{Q\left( x \right)}}{{p\left( x \right)}}} {\rm{d}}x$ <0矛盾.当|tn|≤1时,对∀x∈Ω,|tn|p+-p-≤|tn|p(x)-p-≤1. (4)式两边同时除以|tn|p-,可得
即
同样,当n→∞时,有
亦与
$\int_\mathit{\Omega } {\frac{{Q\left( x \right)}}{{p\left( x \right)}}} {\rm{d}}x$ <0矛盾.综上所述,引理1的结论成立.
引理 2 假设条件(f1),(f2)和(2)式成立,则存在λ*,β,ρ>0,使得对任意λ∈(0,λ*),有:
(i) 当‖u‖V=ρ时,Jλ(u)≥β;
(ii)
$\mathop {\inf }\limits_{{{\left\| u \right\|}_V} \le \rho } $ Jλ(u)<0;(iii) 存在ω∈H1(Ω),使得‖ω‖≥ρ,Jλ(ω)≤0.
证 当|t|≤1时,对某一固定的η>0,若‖▽v‖2≤η |t|,则t2≥
$\frac{{{\rho ^2}}}{{1 + {\eta ^2}}}$ . 由引理1可知其中
因此
若‖▽v‖2>η |t|,由‖u‖V2=t2+‖▽v‖22知
由Sobolev不等式知,当‖u‖V=ρ<1时,存在常数C1>0,使得
故当‖u‖V=ρ<1时,
取
就有
由‖u‖V=ρ和(6)式,有
由条件(f1)知,存在常数C(ρ)>0,使得
因而,对‖u‖V=ρ,存在λ*>0,当0<λ<λ*时,有
(ii) 由条件(f2)知,对任一给定的M>0,存在t0∈(0,1),当0<t<t0时,F(x,t)≥
$\frac{{{t^2}M}}{2}$ . 故由p->2知,当t0充分小时,Jλ(t)<0,从而
$\mathop {\inf }\limits_{{{\left\| u \right\|}_V} \le \rho } {J_\lambda }\left( u \right)$ <0.(iii) 令v0∈supp{Ω1}(v0≠0),当t>1时,
由mes(Ω1)>0,则
注意到p->2,当t→∞时,Jλ(tv0)→ -∞. 取t1充分大,使得ω=t1v0满足‖ω‖≥ρ,则Jλ(ω)<0.
引理 3 假设条件(f1),(f2)和(2)式成立,则存在Λ*>0,使得0<λ<Λ*时,Jλ满足(PS)条件.
证 设{un}是H1(Ω)中的任一(PS)序列,则存在c>0,使得当n→∞时,有
下证{un}有界. 假设‖un‖→∞,令vn=
$\frac{{{u_n}}}{{\left\| {{u_n}} \right\|}}$ ,则有‖vn‖=1. 故存在v∈H1(Ω),使得由(8)式可得
由条件(f1)知
由于‖vn‖=1,则存在C≥0,使得
故当n→∞时,
类似地可以推出,当n→∞时,
由此,
则当n→∞时,可得
由∫Ω|▽vn|2dx→0知,v=l(l为常数),由∫ΩQ(x)‖un‖p(x)-2|vn|p(x)dx→0知,∫ΩQ(x)|l|p(x)=0. 故可得l=0和vn 0,与‖vn‖=1矛盾,故{un}在H1(Ω)上有界. 故存在一个收敛子列(仍记为{un})和u∈H1(Ω),使得当n→∞时,有
取任意的i,j∈
$\mathbb{N} $ ,就有又因为
所以当i,j→∞时,‖ui-uj‖→0,故{un}在H1(Ω)中存在强收敛的子列,引理3得证.
定理 1 假设条件(f1),(f2)和(2)式成立,则存在λ*>0,使得0<λ<λ*,那么问题(1)有两个非平凡解.
证 由引理2知
在{u:‖u‖V≤ρ}上运用Ekeland's变分原理[16],获得问题(1)有一个解u1,满足Jλ(u1)=
$\widetilde {{c_\lambda }}$ <0. 由引理2知,Jλ(u)具有山路几何结构. 由引理3知,当λ*>0,λ∈(0,λ*)时,Jλ(u)满足(PS)条件. 令由山路引理知,问题(1)存在另一个解u2,满足Jλ(u2)=cλ>0. 由于
故u1和u2是问题(1)的两个不同的非平凡解.
A Class of Neumann Problems with Variable Exponential Growth
- Received Date: 03/09/2020
- Available Online: 20/06/2021
-
Key words:
- Neumann boundary value problem /
- variable exponential growth /
- sign-changing potential /
- variational method
Abstract: In this paper, we consider a class of semilinear Neumann boundary value problems with variable sign potential function and variable exponent. Using the space decomposition technique and some properties of sign-changing potential function, we prove that the functional of such problems satisfies the (PS) conditions and has astructure of mountain pass geometry. With the variational method, we obtain the existence of two nontrivial solutions of these problems.