Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 10
Article Contents

YUAN Kexin, TAN Yi, ZHANG Chenglin, et al. Research of the Pharmacological Mechanism of the Drug Pair Angelicae sinensis Radix-Chuanxiong Rhizoma Based on Network Pharmacology and Molecular Docking[J]. Journal of Southwest University Natural Science Edition, 2021, 43(10): 77-83. doi: 10.13718/j.cnki.xdzk.2021.10.010
Citation: YUAN Kexin, TAN Yi, ZHANG Chenglin, et al. Research of the Pharmacological Mechanism of the Drug Pair Angelicae sinensis Radix-Chuanxiong Rhizoma Based on Network Pharmacology and Molecular Docking[J]. Journal of Southwest University Natural Science Edition, 2021, 43(10): 77-83. doi: 10.13718/j.cnki.xdzk.2021.10.010

Research of the Pharmacological Mechanism of the Drug Pair Angelicae sinensis Radix-Chuanxiong Rhizoma Based on Network Pharmacology and Molecular Docking

More Information
  • Corresponding author: CHEN Yi
  • Received Date: 11/06/2020
    Available Online: 20/10/2021
  • MSC: Q949.763.3; R966

  • This study was designed to explore the network pharmacology mechanism of the drug pair Angelicae Sinensis Radix-Chuanxiong Rhizoma, and verify it with molecular docking. First, the main active components and targets in the drug pair Angelicae Sinensis Radix-Chuanxiong Rhizoma were screened from literature, TCMSP and SEA databases. Next, a "component-target" network was established for key target analysis. Then, the common targets between the key targets and the FDA approved drug targets were selected to construct a "common targets-disease" network. The key targets were subjected to GO enrichment and KEGG pathway analysis. Finally, molecular docking verification was accomplished between the active ingredients and the key targets. A total of 14 active compounds were screened out with 257 targets from this drug pair. Fifty-four key targets were obtained from analyzing the "components-target" network. Thirty-four common targets between the key targets and the FDA approved drug targets were closely related to 113 diseases. The key targets were involved in 155 biological processes, 29 cell components and 66 molecular functions, and in 58 pathways, including pathways in cancer, estrogen signaling pathway and proteoglycans in cancer. In molecular docking, 6 active ingredients showed binding activity with 7 targets. The active components, targets and mechanism of the drug pair Angelicae Sinensis Radix-Chuanxiong Rhizoma were revealed in this research for clinical application.
  • 加载中
  • [1] 李伟霞, 唐于平, 王欢, 等. 药对研究(Ⅶ)——当归-川芎药对[J]. 中国中药杂志, 2013, 38(24): 4220-4226.

    Google Scholar

    [2] 李佳琦, 林燕. 基于数据挖掘的当归、川芎在《汤头歌诀》中的临床应用[J]. 中国中医药现代远程教育, 2019, 17(22): 65-67. doi: 10.3969/j.issn.1672-2779.2019.22.027

    CrossRef Google Scholar

    [3] 邹亮, 彭镰心, 罗杰英, 等. 中药补阳还五汤的HPLC指纹图谱研究[J]. 西南大学学报(自然科学版), 2009, 31(4): 48-51.

    Google Scholar

    [4] 张莹, 韦佳慧, 张成玲, 等. 基于网络药理学的加味佛手散抑制子宫内膜侵袭转移机制研究[J]. 药学学报, 2018, 53(9): 1398-1405.

    Google Scholar

    [5] 陈晶, 邵先明, 侯志涛. 基于网络药理学的黄芪-山药药对治疗2型糖尿病作用机制研究[J]. 中国中医药信息杂志, 2020, 27(6): 89-95.

    Google Scholar

    [6] ZHOU Z Y, XU J Q, ZHAO W R, et al. Ferulic Acid Relaxed Rat Aortic, Small Mesenteric and Coronary Arteries by Blocking Voltage-Gated Calcium Channel and Calcium Desensitization via Dephosphorylation of ERK1/2 and MYPT1[J]. European Journal of Pharmacology, 2017, 815: 26-32. doi: 10.1016/j.ejphar.2017.10.008

    CrossRef Google Scholar

    [7] 张欣, 高增平. 阿魏酸的研究进展[J]. 中国现代中药, 2020, 22(1): 138-147.

    Google Scholar

    [8] 李海刚, 胡晒平, 周意, 等. 川芎主要药理活性成分药理研究进展[J]. 中国临床药理学与治疗学, 2018, 23(11): 1302-1308. doi: 10.12092/j.issn.1009-2501.2018.11.018

    CrossRef Google Scholar

    [9] 姚淞允, 张开霞, 马强, 等. 藁本内酯的临床前研究进展[J]. 药学服务与研究, 2019, 19(2): 106-110.

    Google Scholar

    [10] WEI J, ZHAO B, ZHANG C, et al. Jiawei Foshou San Induces Apoptosis in Ectopic Endometrium Based on Systems Pharmacology, Molecular Docking, and Experimental Evidence[J]. Evidence-Based Complementary and Alternative Medicine, 2019, 2019: 2360367.

    Google Scholar

    [11] KIMB W, KOPPULA S, PARK S Y, et al. Attenuation of Neuroinflammatory Responses and Behavioral Deficits by Ligusticum Officinale (Makino) Kitag in Stimulated Microglia and MPTP-Induced Mouse Model of Parkinson's Disease[J]. Journal of Ethnopharmacology, 2015, 164: 388-397. doi: 10.1016/j.jep.2014.11.004

    CrossRef Google Scholar

    [12] MANCUSO C, SANTANGELO R. Ferulic Acid: Pharmacological and Toxicological Aspects[J]. Food and Chemical Toxicology, 2014, 65: 185-195. doi: 10.1016/j.fct.2013.12.024

    CrossRef Google Scholar

    [13] MICHELH E, TADROS M G, ESMAT A, et al. Tetramethylpyrazine Ameliorates Rotenone-Induced Parkinson's Disease in Rats: Involvement of Its Anti-Inflammatory and Anti-Apoptotic Actions[J]. Molecular Neurobiology, 2017, 54(7): 4866-4878. doi: 10.1007/s12035-016-0028-7

    CrossRef Google Scholar

    [14] YU B, RUAN M, LIANG T, et al. Tetramethylpyrazine Phosphate and Borneol Combination Therapy Synergistically Attenuated Ischemia-Reperfusion Injury of the Hypothalamus and Striatum via Regulation of Apoptosis and Autophagy in a Rat Model[J]. American Journal of Translational Research, 2017, 9(11): 4807-4820.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  /  Tables(3)

Article Metrics

Article views(3853) PDF downloads(366) Cited by(0)

Access History

Research of the Pharmacological Mechanism of the Drug Pair Angelicae sinensis Radix-Chuanxiong Rhizoma Based on Network Pharmacology and Molecular Docking

    Corresponding author: CHEN Yi

Abstract: This study was designed to explore the network pharmacology mechanism of the drug pair Angelicae Sinensis Radix-Chuanxiong Rhizoma, and verify it with molecular docking. First, the main active components and targets in the drug pair Angelicae Sinensis Radix-Chuanxiong Rhizoma were screened from literature, TCMSP and SEA databases. Next, a "component-target" network was established for key target analysis. Then, the common targets between the key targets and the FDA approved drug targets were selected to construct a "common targets-disease" network. The key targets were subjected to GO enrichment and KEGG pathway analysis. Finally, molecular docking verification was accomplished between the active ingredients and the key targets. A total of 14 active compounds were screened out with 257 targets from this drug pair. Fifty-four key targets were obtained from analyzing the "components-target" network. Thirty-four common targets between the key targets and the FDA approved drug targets were closely related to 113 diseases. The key targets were involved in 155 biological processes, 29 cell components and 66 molecular functions, and in 58 pathways, including pathways in cancer, estrogen signaling pathway and proteoglycans in cancer. In molecular docking, 6 active ingredients showed binding activity with 7 targets. The active components, targets and mechanism of the drug pair Angelicae Sinensis Radix-Chuanxiong Rhizoma were revealed in this research for clinical application.

  • 开放科学(资源服务)标志码(OSID):

  • 当归性温味甘,归肝、心、脾经,具有补血调经、活血止痛的功效;川芎性温味辛,归肝、胆、心包经,具有活血行气、祛风止痛的功效. “当归-川芎”常形成药对增强其行气活血、补血养血的作用,如四物汤、佛手散、血府逐瘀汤、补阳还五汤、温经汤和生化汤等经典名方[1-3],但“当归-川芎”药对的物质基础及作用机制尚未阐明. 网络药理学是融合了系统生物学、生物信息学的新兴交叉学科,近年来,被广泛应用于中药的研究中,它通过构建“药物-靶点-通路”多层次网络,系统综合地观察中药对整个疾病网络的调控作用,有利于阐明中药多成分、多靶点、多途径协同作用的机制[4-5].

    本研究通过TCMSP,SEA数据库和文献检索,收集“当归-川芎”药对活性成分及其靶点,构建“成分-靶点”网络,分析得到关键靶点,寻找其与美国食品药品监督管理局(FDA)批准药物靶点的共同靶点,利用TTD和TCMSP数据库分析与共同靶点相关的疾病,建立“共同靶点-疾病”网络. 对关键靶点进行基因功能和KEGG通路分析,将活性成分和关键靶点进行分子对接验证.

1.   材料与方法
  • 通过检索TCMSP(http://lsp.nwu.edu.cn/index.php),SEA(http://sea.bkslab.org/)数据库和文献,收集“当归-川芎”药对中当归、川芎所含成分,然后利用药代动力学参数,即口服生物利用度OB≥30%,类药性DL≥0.18及小肠上皮细胞渗透率Caco-2≥-0.40,筛选出当归、川芎的活性成分.

  • 通过检索TCMSP,SEA数据库,获得当归、川芎活性成分的靶点,利用蛋白质数据库UniProt(http://www.uniprot.org/)的搜索功能,将靶点转换为UniProt ID导入STRING数据库,进行成分-靶点间关联性分析,运用Cytoscape 3.5.0软件构建出“当归-川芎”药对“成分-靶点”网络. 使用中间介数、接近中间度、度值3个指标,对网络进行分析,选择3个指标均大于平均值的靶点作为网络中的关键靶点.

  • 利用Drug Bank (https://www.drugbank.ca/)和TTD(https://db.idrblab.org/ttd/)数据库,收集FDA批准药物靶点,筛选得到关键靶点和药物靶点的共同靶点. 利用TCMSP和TTD数据库获得共同靶点相关疾病,按照医学主题词表MeSH(http://www.nlm.nih.gov/mesh/)将疾病分类,运用Cytoscape 3.5.0软件构建出“共同靶点-疾病”网络.

  • 将关键靶点导入DAVID数据库(https://david.ncifcrf.gov/),进行基因功能和KEGG通路富集分析. 从Pubchem数据库(https://pubchem.ncbi.nlm.nih.gov/)中获取“当归-川芎”药对活性成分的分子结构,将其与关键靶点导入Systems Dock Web Site(http://systemsdock.unit.ois.jp/iddp/home/index)数据库进行分子对接. 对接分数为实验解离/抑制常数值(pKd/pKi)的负对数,大于4.25,表明分子与靶点具有一定的结合活性;大于5.0,表明分子与靶点结合活性较好;大于7.0,表明分子与靶点具有强烈的稳定性及活性.

2.   结果
  • 通过检索TCMSP,SEA数据库,获得当归成分125个,川芎成分189个,阈值设定为OB≥30%,DL≥0.18以及Caco-2≥-0.40,共筛选出候选活性成分8个,其中当归2个,川芎6个. 通过查阅文献获得10个活性成分,其中当归4个,川芎6个. 去除重复成分,最终得到14个活性成分,其中川芎和当归共有活性成分4个,分别是咖啡酸、阿魏酸、洋川芎内酯I、藁本内酯(表 1).

  • 利用TCMSP,SEA数据库,发现川芎12个活性成分对应127个靶点,当归6个活性成分对应337个靶点,删除重复的靶点,“当归-川芎”药对14个活性成分对应257个靶点. “当归-川芎”药对的“成分-靶点”网络包含257个节点和2 388条边(图 1). 分析网络节点的中间介数、接近中间度及度值的平均值,分别为0.003 5,0.441 1,16.925 3,筛选3个指标均大于等于平均值的靶点,得到54个关键靶点,其中11个是当归和川芎共有靶点,分别是PTGS1,VDR,PTGS2,CDC25A,CYP19A1,NR1H4,PRKACA,AR,ESR2,ADRB2,NCOA2,这些靶点可能是川芎和当归协同作用的物质基础.

  • 通过TTD和Drug Bank数据库,获得1 215个FDA批准药物靶点,54个关键靶点和FDA批准药物靶点有34个共同靶点. 通过TTD和TCMSP数据库分析,构建的“共同靶点-疾病”网络由168个点和264条边组成,共同靶点与21组共113种疾病相关,包括肿瘤(14.2%)、神经系统疾病(12.4%)、心血管疾病(8.8%)、心理疾病(8.8%)、病理状况(7.1%)和女性生殖系统疾病(5.9%)等(图 2),这可能是“当归-川芎”药对潜在的治疗靶点和对应的疾病.

  • 34个共同靶点提示的是“当归-川芎”药对潜在作用的疾病,而54个关键靶点能更全面地反映“当归-川芎”药对的成分靶点,因此将54个关键靶点导入DAVID数据库,从生物学过程、分子功能和细胞组分3个不同的方面对基因功能进行分析. 结果显示,54个关键靶点共涉及155个生物过程、29个细胞组分和66个分子功能,其中生物过程中排名前5的有Positive regulation of transcription from RNA polymerase Ⅱ promoter(19个靶点/35.2%),Transcription DNA-templated(14个靶点/25.9%),Signal transduction(13个靶点/24.1%),Negative regulation of transcription from RNA polymerase Ⅱ promoter(12个靶点/22.2%),Response to drug(11个靶点/20.4%). 细胞组分中排名前5的有Nucleus(34个靶点/63%),Plasma membrane(27个靶点/50.0%),Nucleoplasm(24个靶点/44.4%),Cytosol(23个靶点/42.6%),Cytoplasm(23个靶点/42.6%). 分子功能中排名前5的有Protein binding(46个靶点/85.2%),Enzyme binding(19个靶点/35.2%),Transcription factor activity,Sequence-specific DNA binding(13个靶点/24.1%),DNA binding(13个靶点/24.1%),Protein homodimerization activity(12个靶点/22.2%)(图 3). 这表明“当归-川芎”药对可能参与了人体内的多种生物过程.

    KEGG通路富集分析结果显示,54个关键靶点共参与58条信号通路过程,其中包括Pathways in cancer,Estrogen signaling pathway,Proteoglycans in cancer,Calcium signaling pathway,HIF-1 signaling pathway等,涉及癌症、黏附、细胞周期、炎症、细胞凋亡、血管生成及激素调节等,表 2展示了涉及靶点数目排名前20的通路信息.

  • 将“当归-川芎”药对活性成分豆甾醇、β-谷甾醇、洋川芎内酯A、藁本内酯、阿魏酸和4-羟基-3-丁基苯酞与度值排名前10的关键靶点进行分子对接. 结果表明,6个活性成分与7个靶点对接成功,其中豆甾醇、β-谷甾醇、洋川芎内酯A、藁本内酯与NCOA2,ESR2,EP300,ESR1等靶点有较好的结合活性以及稳定性(表 3).

3.   讨论
  • 当归、川芎都是血分之主药,当归味甘,具有养血活血之功效,川芎味辛,是血中气药,具有活血祛瘀、行血散血的功效,两者相使配伍同用,可增强活血化瘀、养血活血之功效,因此“当归-川芎”常作为活血化瘀的药对使用,但它们配伍增效的物质基础并未阐明,我们通过数据库和文献检索获得川芎和当归14个有效成分,其中4个共有成分,分别是咖啡酸、阿魏酸、洋川芎内酯I、藁本内酯. 其中咖啡酸和阿魏酸是酚酸类成分,咖啡酸在机体内儿茶酚氧位甲基转移酶的作用下可转化成阿魏酸,而阿魏酸具有抗氧化、抗血栓、降血脂、降低心肌缺氧、抗菌、抗肿瘤和脑保护等多种药理作用[6-7]. 洋川芎内酯I和藁本内酯是苯酞类成分,洋川芎内酯I具有保护脑、抗凝血作用,藁本内酯具有抗动脉粥样硬化、抗炎镇痛、抗老年痴呆、抗脑缺血、抗肿瘤、抗脂质过氧化、改善微循环等作用[8-9]. 这些共有成分可能是“当归-川芎”药对配伍增效的物质基础,可以进一步通过成分敲出、敲入等技术来验证.

    “当归-川芎”常常配对使用,尤其多见于一些治疗妇科疾病的名方,比如四物汤、佛手散、血府逐瘀汤、温经汤等. 通过数据库检索发现,构建和分析“当归-川芎”药对的“成分-靶点”网络,获得54个关键靶点,其中11个是川芎和当归共有靶点,分别是PTGS1,VDR,PTGS2,CDC25A,CYP19A1,NR1H4,PRKACA,AR,ESR2,ADRB2,NCOA2. 有研究发现PTGS2是FDA批准的治疗子宫内膜异位症的靶点之一[10],而且“当归-川芎”药对中的阿魏酸和川芎嗪能抑制PTGS2的表达[11-14]. CYP19A1参与雌激素合成,ESR2是雌激素受体,分子对接结果中,豆甾醇、β-谷甾醇、洋川芎内酯A、藁本内酯与ESR2有较好的结合活性,也有研究发现阿魏酸和川芎嗪能抑制雌激素水平[4, 10],但是“当归-川芎”药对及其活性成分对CYP19A1和ESR2的作用还未见报道,值得研究. 其中34个关键靶点也是FDA批准药物靶点,PTGS2,ESR2可作为治疗女性生殖系统疾病及妊娠并发症的靶点,进一步KEGG通路富集分析发现,关键靶点调控多条与雌激素、孕激素相关的通路,包括Estrogen signaling pathway,Oxytocin signaling pathway,Progesterone-mediated oocyte maturation,GnRH signaling pathway,Endocrine and other factor-regulated calcium reabsorption,这可能是“当归-川芎”配对用于治疗妇科疾病的机制,值得进一步深入研究.

Figure (3)  Table (3) Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return