Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 11
Article Contents

GAN Shengjin. Estimate for a Class of Conditional Covariance and Its Large Sample Properties[J]. Journal of Southwest University Natural Science Edition, 2021, 43(11): 80-87. doi: 10.13718/j.cnki.xdzk.2021.11.010
Citation: GAN Shengjin. Estimate for a Class of Conditional Covariance and Its Large Sample Properties[J]. Journal of Southwest University Natural Science Edition, 2021, 43(11): 80-87. doi: 10.13718/j.cnki.xdzk.2021.11.010

Estimate for a Class of Conditional Covariance and Its Large Sample Properties

More Information
  • Received Date: 06/11/2019
    Available Online: 20/11/2021
  • MSC: O212

  • A kernel estimator for a class of conditional covariance is proposed, and its large sample properties are given. Monte Carlo simulation shows that its performance is comparable to the existing methods.
  • 加载中
  • [1] O'BRIEN C M. Introduction to Graphical Modelling [J]. Journal of the Royal Statistical Society: Series D (the Statistician), 1996, 45(4): 531-532.

    Google Scholar

    [2] RUPPERT D, WAND M P, HOLST U, et al. Local Polynomial Variance-Function Estimation [J]. Technometrics, 1997, 39(3): 262-273. doi: 10.1080/00401706.1997.10485117

    CrossRef Google Scholar

    [3] FAN J Q, YAO Q W. Efficient Estimation of Conditional Variance Functions in Stochastic Regression [J]. Biometrika, 1998, 85(3): 645-660. doi: 10.1093/biomet/85.3.645

    CrossRef Google Scholar

    [4] DRTON M, PERLMAN M D. Model Selection for Gaussian Concentration Graphs [J]. Biometrika, 2004, 91(3): 591-602. doi: 10.1093/biomet/91.3.591

    CrossRef Google Scholar

    [5] SMITH M, KOHN R. Parsimonious Covariance Matrix Estimation for Longitudinal Data [J]. Journal of the American Statistical Association, 2002, 97(460): 1141-1153. doi: 10.1198/016214502388618942

    CrossRef Google Scholar

    [6] LEDOIT O, WOLF M. Honey, I Shrunk the Sample Covariance Matrix [J]. The Journal of Portfolio Management, 2004, 30(4): 110-119. doi: 10.3905/jpm.2004.110

    CrossRef Google Scholar

    [7] YIN J, GENG Z, LI R, et al. Nonparametric Covariance Model [J]. Statistica Sinica, 2010, 20: 469-479.

    Google Scholar

    [8] CHEN Z Q, LENG C L. Dynamic Covariance Models [J]. Journal of the American Statistical Association, 2016, 111(515): 1196-1207. doi: 10.1080/01621459.2015.1077712

    CrossRef Google Scholar

    [9] LI Q Racine J S. Nonparametric Econometrics: Theory and Practice [M]. Princeton: Princeton University Press, 2006: 66-72.

    Google Scholar

    [10] COOK R D, LI B. Determining the Dimension of Iterative Hessian Transformation [J]. The Annals of Statistics, 2004, 32(6): 2501-2531.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article Metrics

Article views(2183) PDF downloads(312) Cited by(0)

Access History

Other Articles By Authors

Estimate for a Class of Conditional Covariance and Its Large Sample Properties

Abstract: A kernel estimator for a class of conditional covariance is proposed, and its large sample properties are given. Monte Carlo simulation shows that its performance is comparable to the existing methods.

  • 开放科学(资源服务)标志码(OSID):

  • p维随机变量X=(X1X2,…,Xp)T,在给定协变量U=u条件下,考虑X的条件协方差矩阵,即

    p=1时,条件协方差矩阵特殊化为条件方差Var(X|U=u). 条件方差及协方差函数的估计已在文献[1-6]中有较为详细讨论. 依据

    文献[7]通过极小化拟似然函数:

    构造ΣXX(u)的估计量:

    其中mX(u)的N-W核估计量为

    窗宽h>0,{(XiUi)}i=1n为来自总体(XU)的简单随机样本. 条件协方差矩阵的另外一种表示形式为

    故一种显而易见的核估计量为

    虽然文献[8]也提到$\widetilde{\mathit{\boldsymbol{\Sigma}}}_{\boldsymbol{XX}}(u)$,但并未给出其渐近性质,本文针对其大样本性质及其统计模拟展开研究.

1.   估计量的大样本性质
  • 在导出估计量的渐近性质之前,一些限制性条件十分必要,它们经常在非参数核估计中用到,尽管它们不是最弱的,但能使证明变得简便.

    (C1) U的边缘密度f(u)具有紧支集,并且在支撑集中,f(u)显著大于0,具有连续的二阶导数.

    (C2) E(Xk1j1Xk2j2|U=u)存在并且在u点具有连续的二阶导数,其中j1j2∈{1,2,…p},k1,k2∈{0,1},k1k2可能不相同,存在某个δ>0,使得E(|Xk1j1Xk2j2|2+δ|U=u)<+∞.

    (C3) 核密度函数K(v)满足以下条件:K(v)有界并且关于原点对称,K(v)≥0,

    (C4) 存在常数c使得窗宽h→0,nh5cc>0,当n→+∞.

    为方便起见,有必要对一些符号表示含义作如下说明:令函数g(u),$\dot{g}(u)$$\ddot{g}(u)$分别表示g(u)的一阶、二阶导数,令

    在类似于(C1)-(C4)的条件下,文献[7]得到条件协方差矩阵的核估计大样本形式:

    其中:

    为导出$\widetilde{\mathit{\boldsymbol{\Sigma}}}_{\boldsymbol{XX}}(u)$的大样本性质,给出如下引理1.

    引理1  令uU的支撑的内点,在条件(C1)-(C4)下

    逐点依分布收敛,其中

      令

    XijX的第j个分量第i次观测,则有

    由于${\hat{f}(u)}$=f(u)+op(1),故只须推导出$\frac{1}{n h} \sum\limits_{i=1}^{n}$(Xij1Xij2-mXXj1j2(u))K$\left(\frac{U_{i}-u}{h}\right)$的渐近分布即可. 对A2进行泰勒展开

    不难得到

    依据条件(C2)和有界的核密度函数K(·)以及Cr不等式[9],由Liapunov's中心极限定理可知$\sqrt{n h} A_{1}$N(0,Var(Xj1Xj2|U=u)K0f(u))依分布收敛. 易知

    故有

    类似以上讨论,

    引理得证.

    值得注意的是,尽管引理1给出核估计量的渐近正态性,但是这没有必要,只须将估计量写成以下相合形式:

    其中

    类似引理1过程,不难得到以下结果:

    其中

    通过以上讨论,由(2)式、(3)式,根据条件(C1)-(C4)和Cr不等式[9]可得定理1.

    定理1  令uU的支撑的内点,在条件(C1)-(C4)下,

    逐点依分布收敛,其中

    定理2给出逆协方差矩阵估计量的大样本性质.

    定理2  设u为协变量U的内点,在条件(C1)-(C4)下,

      由定理1,根据文献[10]讨论,假设

    依据$\widetilde{\mathit{\boldsymbol{\Sigma}}}_{\boldsymbol{XX}}(u)^{-1} \widetilde{\mathit{\boldsymbol{\Sigma}}}_{\boldsymbol{XX}}(u)=\boldsymbol{I}$,解下列方程得到BnVn

    左边是

    定理得证.

    同理可得

2.   随机模拟
  • 借助文献[7]采用留一交叉验证拟似然函数来选择最优窗宽:

    $\hat{\boldsymbol{m}}_{-i}\left(u_{i}\right), \widetilde{\mathit{\boldsymbol{\Sigma}}}_{\boldsymbol{X} \boldsymbol{X}}(u)_{(-i)}$分别是去掉第i个样本后的N-W核估计量和新估计量. σij表示矩阵的(ij)元素,采用100次蒙特卡洛模拟的偏差平均数来衡量估计量估计性能,偏差项数越多,可能的偏差越大,因此以下模拟协变量U为[0, 1]上的均匀分布. 由于ΣXX(u)中有效参数数量为$\frac{p(p+1)}{2}$,限于篇幅,以下随机模拟选择p=3,4.

    模型1  X|U=u~N3(m(u),ΣXX(u)),其中m(u)=$\left(\begin{array}{c}u \\ \sin (u) \\ \mathrm{e}^{u}\end{array}\right)$ΣXX(u)=AAT

    表 1中可知,协方差矩阵6个参数估计中,$\hat{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$σ11σ12σ22上要好于$\widetilde{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$$\widetilde{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$σ13σ23σ33上优于$\hat{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$.从表 2看到,当样本容量增加时,$\hat{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$-1在绝大部分点优于$\hat{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$-1. 从表 1表 2中观测到,当样本容量增加时,估计量偏差越来越趋于零,印证了定理1、定理2.

    模型2  X|U=u~N4(m(u),$\widetilde{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$),其中m(u)=$\left(\begin{array}{c}u^{2} \\ \cos (u) \\ \mathrm{e}^{u} \\ \ln (1+u)\end{array}\right)$$\widetilde{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$=AAT$\boldsymbol{A}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ \sin (u) & \cos (u) & 0 & 0 \\ 2 \sin (u) & 4 \sin (u) & 2 \cos (u) & 0 \\ 6 \cos (u) & 3 \sin (u) & 5 \sin (u) & 4 \cos (u)\end{array}\right)$U~U[0, 1]

    通过表 3可知,除σ44u取值较小点外,$\widetilde{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$估计的各参数与零的接近程度好于$\hat{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$,随着u取值增大,$\widetilde{\boldsymbol{\Sigma}}_{\boldsymbol{XX}}(u)$-1估计量的优势越来越明显.

3.   结语
  • 本文给出动态协方差矩阵核估计量的另外一种形式,由于文献[7]给出的核估计量在每个样本点均需计算$\hat{\boldsymbol{m}}_{X}\left(U_{i}\right)$,尤其利用交叉验证选择最优窗宽时,计算格外耗时,另外其估计量的大样本性质推导极为繁琐. 相比较而言,本文建议的核估计量的计算相对简单,大样本性质简单易得,并且模拟结果表明,其估计效果不比文献[7]给出估计量差.

Table (4) Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return