Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 44 Issue 2
Article Contents

WU Zhuolun, SHANG Yanying. Existence of Infinite Solutions for Fractional Singular Elliptic Equations[J]. Journal of Southwest University Natural Science Edition, 2022, 44(2): 89-95. doi: 10.13718/j.cnki.xdzk.2022.02.011
Citation: WU Zhuolun, SHANG Yanying. Existence of Infinite Solutions for Fractional Singular Elliptic Equations[J]. Journal of Southwest University Natural Science Edition, 2022, 44(2): 89-95. doi: 10.13718/j.cnki.xdzk.2022.02.011

Existence of Infinite Solutions for Fractional Singular Elliptic Equations

More Information
  • Corresponding author: SHANG Yanying
  • Received Date: 13/04/2021
    Available Online: 20/02/2022
  • MSC: O176.3

  • In this paper, we studiedy a class of singular elliptic equations with fractional Sobolev-Hardy critical exponents.We overcome the lack of compactness by using the (PS)c* condition, and proved the existence of infinite solutions of the equation by using the dual fountain theorem.
  • 加载中
  • [1] KANG D S, PENG S J. Existence of Solutions for Elliptic Problems with Critical Sobolev-Hardy Exponents [J]. Israel Journal of Mathematics, 2004, 143(1): 281-297. doi: 10.1007/BF02803503

    CrossRef Google Scholar

    [2] 刘海燕, 廖家锋, 唐春雷. 带Hardy-Sobolev临界指数的半线性椭圆方程正解的存在性[J]. 西南大学学报(自然科学版), 2015, 37(6): 60-65.

    Google Scholar

    [3] 苑紫冰, 欧增奇. 一类具有Hardy-Sobolev临界指数的Kirchhoff方程的多解性[J]. 西南师范大学学报(自然科学版), 2021, 46(8): 32-36.

    Google Scholar

    [4] KANG D S, PENG S J. Solutions for Semilinear Elliptic Problems with Critical Sobolev-Hardy Exponents and Hardy Potential [J]. Applied Mathematics Letters, 2005, 18(10): 1094-1100. doi: 10.1016/j.aml.2004.09.016

    CrossRef Google Scholar

    [5] HE X M, ZOU W M. Infinitely Many Arbitrarily Small Solutions for Singular Elliptic Problems with Critical Sobolev-Hardy Exponents [J]. Proceedings of the Edinburgh Mathematical Society, 2009, 52(1): 97-108. doi: 10.1017/S0013091506001568

    CrossRef Google Scholar

    [6] HE X M, ZOU W M. Infinitely Many Solutions for a Singular Elliptic Equation Involving Critical Sobolev-Hardy Exponents in $\mathbb{R}^N $ [J]. Acta Mathematica Scientia, 2010, 30(3): 830-840. doi: 10.1016/S0252-9602(10)60082-3

    CrossRef $\mathbb{R}^N $" target="_blank">Google Scholar

    [7] 余芳, 陈文晶. 带有临界指数增长的分数阶问题解的存在性[J]. 西南大学学报(自然科学版), 2020, 42(10): 116-123.

    Google Scholar

    [8] SHANG X D, ZHANG J H, YIN R. Existence of Positive Solutions to Fractional Elliptic Problems with Hardy Potential and Critical Growth [J]. Mathematical Methods in the Applied Sciences, 2019, 42(1): 115-136. doi: 10.1002/mma.5327

    CrossRef Google Scholar

    [9] ZHANG J G, HSU T S. Multiple Solutions for a Fractional Laplacian System Involving Critical Sobolev-Hardy Exponents and Homogeneous Term [J]. Mathematical Modelling and Analysis, 2020, 25(1): 1-20. doi: 10.3846/mma.2020.7704

    CrossRef Google Scholar

    [10] ZHANG K Y, O'REGAN D, XU J F, et al. Infinitely Many Solutions Via Critical Points for a Fractional p-Laplacian Equation with Perturbations [J]. Advance in Difference Equations, 2019, 2019(1): 166. doi: 10.1186/s13662-019-2113-5

    CrossRef Google Scholar

    [11] 商彦英, 唐春雷. 一类奇异椭圆方程无穷多解的存在性[J]. 东北师大学报(自然科学版), 2007, 39(4): 10-16.

    Google Scholar

    [12] DI NEZZA E, PALATUCCI G, VALDINOCI E. Hitchhiker's Guide to the Fractional Sobolev Spaces [J]. Bulletin Des Sciences Mathematigues, 2012, 136(5): 521-573. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [13] YANG J F. Fractional Sobolev-Hardy Inequality in $\mathbb{R}^N $ [J]. Nonlinear Analysis, 2015, 119: 179-185. doi: 10.1016/j.na.2014.09.009

    CrossRef $\mathbb{R}^N $" target="_blank">Google Scholar

    [14] CHOU K S, CHU C W. On the Best Constant for a Weighted Sobolev-Hardy Inequality [J]. Journal of the London Mathematical Society, 1993, S2-48(1): 137-151.

    Google Scholar

    [15] WILLEM M. Minimax Theorems [M]. Boston, M A: Birkhauser, 1996.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(847) PDF downloads(168) Cited by(0)

Access History

Other Articles By Authors

Existence of Infinite Solutions for Fractional Singular Elliptic Equations

    Corresponding author: SHANG Yanying

Abstract: In this paper, we studiedy a class of singular elliptic equations with fractional Sobolev-Hardy critical exponents.We overcome the lack of compactness by using the (PS)c* condition, and proved the existence of infinite solutions of the equation by using the dual fountain theorem.

  • 开放科学(资源服务)标志码(OSID):

  • 本文中,我们研究如下问题:

    其中,Ω $\mathbb{R}^N $(N≥3)是具有光滑边界的有界区域,0 < s < 1,0≤α < 2s < N $0 \le \gamma < {\gamma _H} = {4^s}\frac{{{\mathit{\Gamma} ^2}\left( {\frac{{N + 2s}}{4}} \right)}}{{{\mathit{\Gamma} ^2}\left( {\frac{{N - 2s}}{4}} \right)}}$ $2_s^*(\alpha ) = \frac{{2(N - \alpha )}}{{N - 2s}}$是Sobolev-Hardy临界指数, $2_s^*(0) = 2_s^* = \frac{{2N}}{{N - 2s}}$是Sobolev临界指数,λ是正参数.

    近年来,带有Sobolev-Hardy临界指数的奇异椭圆方程受到广泛关注.当s=1时,方程即是整数阶方程,文献[1-3]利用山路引理得到了这类整数阶方程存在正解,文献[4]利用极大极小值原理得到了其变号解.文献[5-6]在g(xu)满足关于u是奇函数的条件下,得到了这类整数阶方程无穷多解的存在性.

    当0 < s < 1时,关于分数阶方程解的存在性可参见文献[7-8].文献[9]得到了这类分数阶方程多解的存在性.文献[10]在以下条件(G)成立时,得到了Sobolev临界分数阶p-Laplacian方程无穷多解的存在性:

    (G) 存在d1r0>0, $\tau > \frac{{p_\alpha ^*}}{{p_\alpha ^* - p}}$,使得 $g{(x, u)^\tau } \le {d_1}\left( {\frac{1}{p}g(x, u) - G(x, u)} \right)$对于所有x $\mathbb{R}^N $和‖u‖≥r0成立.

    条件(G)保证了PS序列的有界性.我们在文献[10]的基础上,考虑了分数阶椭圆方程在Sobolev-Hardy临界情况下无穷多解的存在性.在Sobolev-Hardy临界情况下不需要条件(G)也能证明PS序列有界.本文通过文献[11]的方法,在没有条件(G)的情况下,证明了能量泛函在某一范围内满足(PS)c*条件,运用对偶喷泉定理,得到了方程(1)存在无穷多个弱解.

    本文中,非线性项 $g \in C(\bar {\mathit{\Omega}} \times \mathbb{R}, \mathbb{R})$满足以下条件:

    (g1) $\mathop {\lim }\limits_{|t| \to \infty } \frac{{g(x, t)}}{{{t^{2_s^*(\alpha ) - 1}}}} = 0$xΩ一致成立;

    (g2) $\mathop {\lim }\limits_{|t| \to 0} \frac{{g(x, t)}}{t} = + \infty $xΩ一致成立;

    (g3) g(x,-t)=-g(xt)对所有 $t \in \mathbb{R}$xΩ成立.

    我们用Hs(Ω)表示分数阶Sobolev空间[12],其范数定义为

    泛函空间为

    记空间的范数为

    γ < γh时,Sobolev-Hardy最佳常数[13]定义为

    方程(1)对应的能量泛函为

    方程的解与泛函的临界点一一对应.本文中用CCi表示各种正常数.

    我们的主要结果如下:

    定理1  假设条件(g1)-(g3)成立,则存在λ*>0,对任意λ∈(0,λ*),方程(1)有无穷多个弱解{uk}⊂X0s(Ω),满足:J(uk) < 0,且当k→+∞时,J(uk)→0.

    引理1[14]  假设{un}⊂X0s(Ω)是一个有界序列,当2 < pn≤2s*(α)(pn→2s*(α),n→∞)时,存在一个子列(仍记为{un})满足:

    (ⅰ) 在L2(Ω)中, $\frac{{{u_n}}}{x}$ $\frac{u}{x}$

    (ⅱ) 当n→∞时, $\int_{\mathit{\Omega}} {\frac{{{{\left| {{u_n}} \right|}^2}}}{{|x{|^\alpha }}}} {\rm{d}}x - \int_{\mathit{\Omega}} {\frac{{{{\left| {{u_n} - u} \right|}^2}}}{{|x{|^\alpha }}}} {\rm{d}}x \to \int_{\mathit{\Omega}} {\frac{{|u{|^2}}}{{|x{|^\alpha }}}} {\rm{d}}x$

    (ⅲ) 当n→∞时,对任意的vX0s(Ω), $\int_{\mathit{\Omega}} {\frac{{{{\left| {{u_n}} \right|}^{{p_n} - 2}}}}{{|x{|^\alpha }}}} {u_n}v{\rm{d}}x \to \int_{\mathit{\Omega}} {\frac{{{{\left| u \right|}^{2_s^*(\alpha )}} - 2}}{{|x{|^\alpha }}}} uv{\rm{d}}x$.

    引理2[15](对偶喷泉定理)  设X是Banach空间,满足 $J \in {C^1}(X, \mathbb{R})$是偶泛函,Xj(j=1,2,…)为X上的一维子空间,且 $X = \overline {\mathop \oplus \limits_{j \in \mathbb{N}} {X_j}} $,记 ${Y_k} = \mathop \oplus \limits_{j = 1}^k {X_j}, {Z_k} = \overline {\mathop \oplus \limits_{j = k}^\infty {X_j}} $k为自然数,如果存在k0>0,对任意的kk0,存在ρkrk>0,使得以下条件成立:

    (B1) ${a_k} = \mathop {\inf }\limits_{u \in {Z_k}} J\left( u \right) \ge 0$

    (B2) ${b_k} = \mathop {\max }\limits_{u \in Y} J\left( u \right) < 0$

    (B3) ${d_k} = \mathop {\inf }\limits_{u \in {Z_k}} J\left( u \right) \to 0\left( {k \to \infty } \right)$

    (B4) 对任意的c∈[dk0,0),J满足(PS)c*条件.

    J有一个临界点序列{uk},且J(uk) < 0 (k=1,2,…),J(uk)→0(k→+∞).

    J满足(PS)c*条件是指:对于X中所有满足nj→∞时,unjYnjJ(unj)→cJ|′Ynj(unj)→0的序列{unj},都包含一个收敛的子序列,且收敛到J的临界点.

    引理3  假设g满足条件(g1),则存在常数C>0,使得

      由条件(g1)可以得到

    所以

    则(3)式成立.

    引理4  假设条件(g1)成立,则对任意的β0>0,存在λ*>0,使得对任意λ∈(0,λ*),J都满足(PS)c*条件,其中 $c \in\left(-\infty, \frac{2 s-\alpha}{2(N-\alpha)} {\mathit{\Lambda}}_{\gamma, s, \alpha}^{\frac{N-\alpha}{2 s-\alpha}}-\beta_{0}\right)$.

      设{ej}是X0s(Ω)中的一组标准规范正交基,Xj=Rej ${Y_k} = \mathop \oplus \limits_{j = 1}^k {X_j}$,序列{unj}⊂X0s(Ω),使得unjYnjJ(unj)→cJ|′Ynj(unj)→0(nj→∞),对任意vX0s(Ω),都有

    首先证明{un}在X0s(Ω)中有界.对充分大的nj,有

    由(5)式和(6)式可知

    因为Ω $\mathbb{R}^N $是有界区域,所以存在常数C0>0,使得ΩB(0,C0),且

    由(3)式和(7)式可得

    因此,当 $\lambda \in\left(0, \frac{2 s-\alpha}{2 C_{0}^{\alpha}(N-\alpha)}\right)$时,有

    由条件(g1)可得

    因为

    所以

    结合(8)式可得

    故{un}在X0s(Ω)中有界.

    再证明在X0s(Ω)中unu.

    由以上证明知{un}在X0s(Ω)中有界,所以存在子序列{unj},使得在X0s(Ω)中unju.

    根据Vitali定理和引理1,有

    根据(4)式,对任意的vX0s(Ω),有

    首先令wnj=unj-u,由J′(unj)→0,有

    由Brezis-Lieb引理和引理1,可以得到

    结合(3)式和(8)式可得

    则对任意λ∈(0,λ*),有

    再由J(unj)→c(nj→∞),由Brezis-Lieb引理和引理1,得到

    根据(9)式和(10)式可得

    我们断言,当nj→∞时,‖wnj‖→0.否则,存在子序列(仍记为{wnj})和正常数m,使得

    根据Λγsα的定义,有

    因为m≠0,所以 $m \geqslant {\mathit{\Lambda}}_{\gamma, s, \alpha}^{\frac{N-\alpha}{2 s-\alpha}}$.结合(13)式,可以得到

    这与(12)式矛盾.所以m=0,在X0s(Ω)中有unu.

    定理1的证明

    假设条件(g3)成立,对任意的uX0s(Ω),都有J(u)=J(-u),所以J是偶泛函.我们下面将逐一验证引理2中的条件成立.

    (B1) 根据条件(g1),存在常数C8>0,满足

    所以

    由Sobolev不等式和Sobolev-Hardy不等式,存在常数R1R2>0,使得

    我们记 $\varphi_{k}=\sup\limits_{u \in Z_{k} \atop\|u\|=1}\|u\|_{1}$R0=min{R1R2}.对uZk,‖u‖≤R0,根据(14)式可得

    选取ρk=4λC8φk.根据文献[14]中的引理3.8,φk→0(k→∞),有ρk→0(k→∞).从而存在k0>0,当kk0时有ρkR0.即对kk0uZk,‖u‖=ρk,所以得到J(u)≥0.

    (B2) 因为Yk是有限维空间,所以对任意的uYk,存在θ>0,使得θu‖≤‖u2.根据条件(g2),对 $M = \frac{2}{{\lambda {\theta ^2}}}$,存在r0>0,满足当0 < |t| < r0时, $G(x, t) \ge \frac{{M{t^2}}}{2}$.因此,对任意的uYk,‖u‖=1,当rk>0充分小时,可得

    则对uYk,‖u‖=rk,有J(u) < 0.选取rk < ρk,(B2)成立.

    (B3) 根据(15)式,当kk0时,uZk且‖u‖≤ρk,满足

    由于当k→∞时φk→0,ρk→0,并且0∈ZkJ(0)=0, $-\lambda C_{8} \varphi_{k} \rho_{k} \leqslant \inf\limits_{u \in Z_{k} \atop\|u\|=r_{k}} J(u)<0$.

    所以, ${d_k}\mathop {\inf }\limits_{\begin{array}{*{20}{c}} {u \in {Z_k}}\\ {u = {\rho _k}} \end{array}} J(u) \to 0$.从而(B3)成立.

    (B4) 存在λ*>0,当λ∈(0,λ*)时, $\frac{{2s - \alpha }}{{2(N - \alpha )}}{\mathit{\Lambda}} _{\gamma , s, \alpha }^{\frac{{N - \alpha }}{{2s - \alpha }}} > {\beta _0}$.由引理4可知,对c∈[dk0,0),J满足(PS)c*条件.

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return