[1]
|
YAMAGUCHI S. Gibberellin Metabolism and its Regulation[J]. Annual Review of Plant Biology, 2008, 59: 225-251.
Google Scholar
|
[2]
|
FUJIOKA S, SAKURAI A. Biosynthesis and Metabolism of Brassinosteroids[J]. Physiologia Plantarum, 1997, 100(3): 710-715. doi: 10.1111/j.1399-3054.1997.tb03078.x
CrossRef Google Scholar
|
[3]
|
SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al. A Mutant Gibberellin-synthesis Gene in Rice[J]. Nature, 2002, 416(6882): 701-702. doi: 10.1038/416701a
CrossRef Google Scholar
|
[4]
|
MONNAL, KITAZAWAN, YOSHINOR, et al. Positional Cloning of Rice Semidwarfing Gene, Sd-1: Rice "Green Revolution Gene" Encodes a Mutant Enzyme Involved in Gibberellin Synthesis[J]. DNA Research, 2002, 9(1): 11-17.
Google Scholar
|
[5]
|
ZHU Y Y, NOMURA T, XU Y H, et al. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenasethat Epoxidizes Gibberellins in a Novel Deactivation Reaction in Rice[J]. The Plant Cell, 2006, 18(2): 442-456. doi: 10.1105/tpc.105.038455
CrossRef Google Scholar
|
[6]
|
LUO A D, QIAN Q, YIN H F, et al. EUI1, Encoding a Putative Cytochrome P450 Monooxygenase, Regulates Internode Elongation by Modulating Gibberellin Responses in Rice[J]. Plant and Cell Physiology, 2006, 47(2): 181-191. doi: 10.1093/pcp/pci233
CrossRef Google Scholar
|
[7]
|
ITOH H, TATSUMI T, SAKAMOTO T, et al. A Rice Semi-dwarf Gene, Tan-ginbozu (D35), Encodes the Gibberellin Biosynthesis Enzyme, Ent-kaurene Oxidase[J]. Plant Molecular Biology, 2004, 54(4): 533-547. doi: 10.1023/B:PLAN.0000038261.21060.47
CrossRef Google Scholar
|
[8]
|
UEGUCHI-TANAKA M, ASHIKARI M, NAKAJIMA M, et al. GIBBERELLIN INSENSITIVE DWARF1 Encodes a Soluble Receptor for Gibberellin[J]. Nature, 2005, 437(7059): 693-698. doi: 10.1038/nature04028
CrossRef Google Scholar
|
[9]
|
UEGUCHI-TANAKA M, NAKAJIMA M, KATOH E, et al. Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin[J]. The Plant Cell, 2007, 19(7): 2140-2155. doi: 10.1105/tpc.106.043729
CrossRef Google Scholar
|
[10]
|
ASANO K, HIRANO K, UEGUCHI-TANAKA M, et al. Isolation and Characterization of Dominant Dwarf Mutants, Slr1-d, in Rice[J]. Molecular Genetics and Genomics, 2009, 281(2): 223-231. doi: 10.1007/s00438-008-0406-6
CrossRef Google Scholar
|
[11]
|
IKEDA A, UEGUCHI-TANAKA M, SONODA Y, et al. Slender rice, a Constitutive Gibberellin Response Mutant, is Caused by a Null Mutation of the SLR1 Gene, an Ortholog of the Height-Regulating Gene GAI/RGA/RHT/D8[J]. The Plant Cell, 2001, 13(5): 999-1010. doi: 10.1105/tpc.13.5.999
CrossRef Google Scholar
|
[12]
|
MORI M, NOMURA T, OOKA H, et al. Isolation and Characterization of a Rice Dwarf Mutant with a Defect in Brassinosteroid Biosynthesis[J]. Plant Physiology, 2002, 130(3): 1152-1161. doi: 10.1104/pp.007179
CrossRef Google Scholar
|
[13]
|
HONG Z, UEGUCHI-TANAKA M, FUJIOKA S, et al. The Rice Brassinosteroid-deficient Dwarf2 Mutant, Defective in the Rice Homolog of Arabidopsis DIMINUTO/DWARF1, is Rescued by the Endogenously Accumulated Alternative Bioactive Brassinosteroid, Dolichosterone[J]. The Plant Cell, 2005, 17(8): 2243-2254. doi: 10.1105/tpc.105.030973
CrossRef Google Scholar
|
[14]
|
HONG Z, UEGUCHI-TANAKA M, UMEMURA K, et al. A Rice Brassinosteroid-deficient Mutant, Ebisudwarf (d2), is Caused by a Loss of Function of a New Member of Cytochrome P450[J]. The Plant Cell, 2003, 15(12): 2900-2910. doi: 10.1105/tpc.014712
CrossRef Google Scholar
|
[15]
|
BAI M Y, ZHANG L Y, GAMPALA S S, et al. Functions of OsBZR1 and 14-3-3 Proteins in Brassinosteroid Signaling in Rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(34): 13839-13844.
Google Scholar
|
[16]
|
YAMAMURO C, IHARA Y, WU X, et al. Loss of Function of a Rice Brassinosteroid Insensitive1 Homolog Prevents Internode Elongation and Bending of the Lamina Joint[J]. The Plant Cell, 2000, 12(9): 1591-1606.
Google Scholar
|
[17]
|
BHATT I, TRIPATHI B N. Plant Peroxiredoxins: Catalytic Mechanisms, Functional Significance and Future Perspectives[J]. Biotechnology Advances, 2011, 29(6): 850-859. doi: 10.1016/j.biotechadv.2011.07.002
CrossRef Google Scholar
|
[18]
|
ALMAGRO L, GÓMEZROS L V, BELCHI-NAVARRO S, et al. Class Ⅲ Peroxidases in Plant Defence Reactions[J]. Journal of Experimental Botany, 2009, 60(2): 377-390. doi: 10.1093/jxb/ern277
CrossRef Google Scholar
|
[19]
|
HOSSAIN M A, BHATTACHARJEE S, ARMIN S M, et al. Hydrogen Peroxide Priming Modulates Abiotic Oxidative Stress Tolerance: Insights from ROS Detoxification and Scavenging[J]. Frontiers in Plant Science, 2015, 6(1): 420.
Google Scholar
|
[20]
|
HIRAGAS, SASAKIK, ITOH, et al. A Large Family of Class Ⅲ Plant Peroxidases[J]. Plant and Cell Physiology, 2001, 42(5): 462-468. doi: 10.1093/pcp/pce061
CrossRef Google Scholar
|
[21]
|
PASSARDI F, LONGET D, PENEL C, et al. The Class Ⅲ Peroxidase Multigenic Family in Rice and Its Evolution in Land Plants[J]. Phytochemistry, 2004, 65(13): 1879-1893.
Google Scholar
|
[22]
|
RAGGI S, FERRARINI A, DELLEDONNE M, et al. The ArabidopsisThaliana Class Ⅲ Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage[J]. Plant Physiology, 2015, 169: 2513-2525.
Google Scholar
|
[23]
|
PEDREIRA J, HERRERAMT, ZARRA I, et al. The Overexpression of AtPrx37, an Apoplastic Peroxidase, Reduces Growth in Arabidopsis[J]. Physiologia Plantarum, 2011, 141(2): 177-187. doi: 10.1111/j.1399-3054.2010.01427.x
CrossRef Google Scholar
|
[24]
|
FERNÁNDEZ-PÉREZF, POMAR F, PEDREÑO M A, et al. The Suppression of AtPrx52 Affects Fibers but not Xylem Lignification in Arabidopsis by Altering the Proportion of Syringyl Units[J]. Physiologia Plantarum, 2015, 154(3): 395-406. doi: 10.1111/ppl.12310
CrossRef Google Scholar
|
[25]
|
HERRERO J, FERNÁNDEZ-PÉREZ F, YEBRA T, et al. Bioinformatic and Functional Characterization of the Basic Peroxidase 72 from Arabidopsis Thaliana Involved in Lignin Biosynthesis[J]. Planta, 2013, 237(6): 1599-1612.
Google Scholar
|
[26]
|
KIDWAI M, DHAR Y V, GAUTAM N, et al. Oryza Sativa Class Ⅲ Peroxidase (OsPRX38) Overexpression in Arabidopsis Thaliana Reduces Arsenic Accumulation Due to Apoplastic Lignification[J]. Journal of Hazardous Materials, 2019, 362: 383-393. doi: 10.1016/j.jhazmat.2018.09.029
CrossRef Google Scholar
|
[27]
|
COSIO C, RANOCHA P, FRANCOZ E, et al. The Class Ⅲ Peroxidase PRX17 is a Direct Target of the MADS-box Transcription Factor AGAMOUS-LIKE15 (AGL15) and Participates in Lignified Tissue Formation[J]. The New Phytologist, 2017, 213(1): 250-263.
Google Scholar
|
[28]
|
朱洪慧, 李映姿, 王成洋, 等. 水稻小粒突变体smg2的表型鉴定和候选基因分析[J]. 西南大学学报(自然科学版), 2023, 45(1): 2-11.
Google Scholar
|
[29]
|
LIU H, DONG S Y, LI M, et al. The Class Ⅲ Peroxidase Gene OsPrx30, Transcriptionally Modulated by the AT-hook Protein OsATH1, Mediates Rice Bacterial Blight-induced ROS Accumulation[J]. Journal of Integrative Plant Biology, 2021, 63(2): 393-408. doi: 10.1111/jipb.13040
CrossRef Google Scholar
|
[30]
|
CAI K Z, GAO D, LUO S M, et al. Physiological and Cytological Mechanisms of Silicon-induced Resistance in Rice Against Blast Disease[J]. PhysiologiaPlantarum, 2008, 134(2): 324-333.
Google Scholar
|
[31]
|
KIM Y S, PARK S, KANG K, et al. Tyramine Accumulation in Rice Cells Caused a Dwarf Phenotype via Reduced Cell Division[J]. Planta, 2011, 233(2): 251-260. doi: 10.1007/s00425-010-1303-x
CrossRef Google Scholar
|
[32]
|
LUAN W J, LIU Y Q, ZHANG F X, et al. OsCD1 Encodes a Putative Member of the Cellulose Synthase-like D Sub-family and is Essential for Rice Plant Architecture and Growth[J]. Plant Biotechnology Journal, 2011, 9(4): 513-524.
Google Scholar
|
[33]
|
ZHANG M, ZHANG B C, QIAN Q A, et al. Brittle Culm 12, a Dual-targeting Kinesin-4 Protein, Controls Cell-Cycle Progression and Wall Properties in Rice[J]. The Plant Journal, 2010, 63(2): 312-328.
Google Scholar
|
[34]
|
BORRILL P, MAGO R, XU T Y, et al. An Autoactive NB-LRR Gene Causes Rht13 Dwarfism in Wheat[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(48): e2085092177.
Google Scholar
|