Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2025 Volume 47 Issue 7
Article Contents

WANG Xiaofei, LI Fengfei, DI Xinyan, et al. Identification and Mining Candidate Gene for Yellow-green Leaf Mutant ygl20[J]. Journal of Southwest University Natural Science Edition, 2025, 47(7): 47-58. doi: 10.13718/j.cnki.xdzk.2025.07.004
Citation: WANG Xiaofei, LI Fengfei, DI Xinyan, et al. Identification and Mining Candidate Gene for Yellow-green Leaf Mutant ygl20[J]. Journal of Southwest University Natural Science Edition, 2025, 47(7): 47-58. doi: 10.13718/j.cnki.xdzk.2025.07.004

Identification and Mining Candidate Gene for Yellow-green Leaf Mutant ygl20

More Information
  • Corresponding author: LING Yinghua
  • Received Date: 30/04/2024
    Available Online: 20/07/2025
  • MSC: S511

  • Leaf-color related mutants can directly influence the photosynthesis of plant, eventually affecting the grain yield and quality of rice. A novel yellow-green leaf mutant ygl20 (yellow-green leaf20), was screened from the mutant library of elite restorer line Xinong 1B chemically induced via EMS (ethyl methane sulphonate). Compared to the wild type (WT), plant height, secondary panicle branches, filled grains per panicle, setting rate, and 1000-grain weight of ygl20 significantly decreased (p < 0.05 or 0.01). ContentS of carotenoid (Car), chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (ChlT) of leaves of ygl20 were also extremely decreased (p < 0.01). The photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of the mutant were significantly lower than those of WT (p < 0.01), while intercellular CO2 concentration (Ci) was significantly increased (p < 0.05). The results of transmission electron microscopy showed that in the chloroplast of ygl20, number of osmiophilic corpuscles increased, the stacking density of grana was low, and the stromal lamellae was loose. The results of genetic analysis indicated that yellow-green leaf color of ygl20 was controlled by one pair of recessive nucleic genes. The map-based cloning was used to map and lone the YGL20. It was found that a G/T single base substitution of YGL20 led to the mutant phenotype of yellow-green leaf of ygl20, which coded a product of geranylgeranyl reductase (GGR). RT-qPCR results showed that YGL20 may be involved in the regulation network related to chlorophyll synthesis/metabolism. The results laid a foundation for further identification of the function of YGL20 gene.

  • 加载中
  • [1] 张战辉, 张慧, 李伟亚, 等. RNA解旋酶参与植物叶片衰老调控研究进展[J]. 河南农业大学学报, 2022, 56(2): 171-179.

    Google Scholar

    [2] FENG B H, YANG Y, SHI Y F, et al. Genetic Analysis and Gene Mapping of Light Brown Spotted Leaf Mutant in Rice[J]. Rice Science, 2013, 20(1): 13-18.

    Google Scholar

    [3] WANG Z W, LV J, XIE S Z, et al. OsSLA4 Encodes a Pentatricopeptide Repeat Protein Essential for Early Chloroplast Development and Seedling Growth in Rice[J]. Plant Growth Regulation, 2018, 84(2): 249-260.

    Google Scholar

    [4] LEE S, KIM J H, YOO E S, et al. Differential Regulation of Chlorophyll a Oxygenase Genes in Rice[J]. Plant Molecular Biology, 2005, 57(6): 805-818.

    Google Scholar

    [5] GOH C H, SATOH K, KIKUCHI S, et al. Mitochondrial Activity in Illuminated Leaves of Chlorophyll-deficient Mutant Rice (OsCHLH) Seedlings[J]. Plant Biotechnology Reports, 2010, 4(4): 281-291.

    Google Scholar

    [6] DENG X J, ZHANG H Q, WANG Y, et al. Mapped Clone and Functional Analysis of Leaf-color Gene Ygl7 in a Rice Hybrid (Oryza sativa L. ssp. indica)[J]. PLoS One, 2014, 9(6): e99564.

    Google Scholar

    [7] ZHANG H, LIU L L, CAI M H, et al. A Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction between CHLI and CHLD Subunits in Rice[J]. Plant Molecular Biology Reporter, 2015, 33(6): 1975-1987.

    Google Scholar

    [8] SAKURABA Y, RAHMAN M L, CHO S H, et al. The Rice Faded Green Leaf Locus Encodes Protochlorophyllide Oxidoreductase B and is Essential for Chlorophyll Synthesis under High Light Conditions[J]. The Plant Journal, 2013, 74(1): 122-133.

    Google Scholar

    [9] WU Z M, ZHANG X, HE B, et al. A Chlorophyll-deficient Rice Mutant with Impaired Chlorophyllide Esterification in Chlorophyll Biosynthesis[J]. Plant Physiology, 2007, 145(1): 29-40.

    Google Scholar

    [10] KONG W Y, YU X W, CHEN H Y, et al. The Catalytic Subunit of Magnesium-protoporphyrin IX Monomethyl Ester Cyclase Forms a Chloroplast Complex to Regulate Chlorophyll Biosynthesis in Rice[J]. Plant Molecular Biology, 2016, 92(1): 177-191.

    Google Scholar

    [11] JIANG H W, LI M R, LIANG N T, et al. Molecular Cloning and Function Analysis of the Stay Green Gene in Rice[J]. The Plant Journal, 2007, 52(2): 197-209.

    Google Scholar

    [12] KUSABA M, ITO H, MORITA R, et al. Rice NON-YELLOW COLORING1 is Involved in Light-harvesting Complex Ⅱ and Grana Degradation during Leaf Senescence[J]. The Plant Cell, 2007, 19(4): 1362-1375.

    Google Scholar

    [13] YAMATANI H, SATO Y, MASUDA Y, et al. NYC4, the Rice Ortholog of Arabidopsis THF1, is Involved in the Degradation of Chlorophyll-Protein Complexes during Leaf Senescence[J]. The Plant Journal, 2013, 74(4): 652-662.

    Google Scholar

    [14] SU N, HU M L, WU D X, et al. Disruption of a Rice Pentatricopeptide Repeat Protein Causes a Seedling-specific Albino Phenotype and Its Utilization to Enhance Seed Purity in Hybrid Rice Production[J]. Plant Physiology, 2012, 159(1): 227-238.

    Google Scholar

    [15] LI J Q, WANG Y H, CHAI J T, et al. Green-revertible Chlorina 1 (Grc1) is Required for the Biosynthesis of Chlorophyll and the Early Development of Chloroplasts in Rice[J]. Journal of Plant Biology, 2013, 56(5): 326-335.

    Google Scholar

    [16] LIN D, JIANG Q, ZHENG K, et al. Mutation of the Rice ASL2 Gene Encoding Plastid Ribosomal Protein L21 Causes Chloroplast Developmental Defects and Seedling Death[J]. Plant Biology, 2015, 17(3): 599-607.

    Google Scholar

    [17] LIU X, YI X, YANG Y R, et al. A Rice Geranylgeranyl Reductase is Essential for Chloroplast Development[J]. Journal of Integrative Agriculture, 2021, 20(10): 2592-2600.

    Google Scholar

    [18] JIANG H Z, ZHANG A P, RUAN B P, et al. Identification of Green-revertible Yellow 3 (GRY3), Encoding a 4-hydroxy-3-methylbut-2-enyl Diphosphate Reductase Involved in Chlorophyll Synthesis under High Temperature and High Light in Rice[J]. The Crop Journal, 2023, 11(4): 1171-1180.

    Google Scholar

    [19] LV Y S, SHAO G N, QIU J H, et al. White Leaf and Panicle 2, Encoding a PEP-associated Protein, is Required for Chloroplast Biogenesis under Heat Stress in riceOpen Access[J]. Journal of Experimental Botany, 2017, 68(18): 5147-5160.

    Google Scholar

    [20] ZHOU L G, LIU Z C, LIU Y H, et al. A Novel Gene OsAHL1 Improves both Drought Avoidance and Drought Tolerance in Rice[J]. Scientific Reports, 2016(6): 30264.

    Google Scholar

    [21] MA J, WANG Y F, MA X D, et al. Disruption of Gene SPL35, Encoding a Novel CUE Domain-containing Protein, Leads to Cell Death and Enhanced Disease Response in Rice[J]. Plant Biotechnology Journal, 2019, 17(8): 1679-1693.

    Google Scholar

    [22] SHENG Z H, LV Y S, LI W, et al. Yellow-Leaf 1 Encodes a Magnesium-Protoporphyrin IX Monomethyl Ester Cyclase, Involved in Chlorophyll Biosynthesis in Rice (Oryza sativa L. )[J]. PLoS One, 2017, 12(5): e0177989.

    Google Scholar

    [23] CHEN H, CHENG Z J, MA X D, et al. A Knockdown Mutation of YELLOW-GREEN LEAF2 Blocks Chlorophyll Biosynthesis in Rice[J]. Plant Cell Reports, 2013, 32(12): 1855-1867.

    Google Scholar

    [24] SATO Y, MORITA R, KATSUMA S, et al. Two Short-chain Dehydrogenase/Reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are Required for Chlorophyll b and Light-Harvesting complex Ⅱ Degradation during Senescence in Rice[J]. The Plant Journal, 2009, 57(1): 120-131.

    Google Scholar

    [25] 施军琼, 王亚琴, 张天泉, 等. 水稻黄绿叶基因Yellow-Green Leaf 6(YGL6) 的表达模式与蛋白定位[J]. 作物学报, 2018, 44(5): 650-656.

    Google Scholar

    [26] ZHU X Y, GUO S, WANG Z W, et al. Map-based Cloning and Functional Analysis of YGL8, which Controls Leaf Colour in Rice (Oryza sativa)[J]. BMC Plant Biology, 2016, 16(1): 134.

    Google Scholar

    [27] SHAN X Q, WANG H O, ZHANG S Z, et al. Accumulation and Uptake of Light Rare Earth Elements in a Hyperaccumulator Dicropteris Dichotoma[J]. Plant Science, 2003, 165(6): 1343-1353.

    Google Scholar

    [28] LICHTENTHALER H K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes[J]. Methods in Enzymology, 1987, 148: 350-382.

    Google Scholar

    [29] PANAUD O, CHEN X, MCCOUCH S R. Development of Microsatellite Markers and Characterization of Simple Sequence Length Polymorphism (SSLP) in Rice (Oryza sativa L. )[J]. Molecular and General Genetics MGG, 1996, 252(5): 597-607.

    Google Scholar

    [30] WANG Y, ZHU Z, SUN Y, et al. Identification of a Novel D3 Allele Playing a Role in Nitrogen Utilization[J]. Euphytica, 2020, 216(3): 55.

    Google Scholar

    [31] GUSTAFSSONÅ. The Plastid Development in Various Types of Chlorophyll Mutations[J]. Hereditas, 1942, 28(3-4): 483-492.

    Google Scholar

    [32] AWAN M A, KONZAK C F, RUTGER J N, et al. Mutagenic Effects of Sodium Azide in Rice[J]. Crop Science, 1980, 20(5): 663-668.

    Google Scholar

    [33] MASUDA T. Recent Overview of the Mg Branch of the Tetrapyrrole Biosynthesis Leading to Chlorophylls[J]. Photosynthesis Research, 2008, 96(2): 121-143.

    Google Scholar

    [34] CHEN N G, WANG P R, LI C M, et al. A Single Nucleotide Mutation of the IspE Gene Participating in the MEP Pathway for Isoprenoid Biosynthesis Causes a Green-revertible Yellow Leaf Phenotype in Rice[J]. Plant and Cell Physiology, 2018, 59(9): 1905-1917.

    Google Scholar

    [35] SHEN L, ZHANG Q, WANG Z W, et al. OsCAF2 Contains Two CRM Domains and is Necessary for Chloroplast Development in Rice[J]. BMC Plant Biology, 2020, 20(1): 381.

    Google Scholar

    [36] HAN S H, SAKURABA Y, KOH H J, et al. Leaf Variegation in the Rice Zebra2 Mutant is Caused by Photoperiodic Accumulation of Tetra-Cis-lycopene and Singlet Oxygen[J]. Molecules and Cells, 2012, 33(1): 87-97.

    Google Scholar

    [37] YANG Y L, XU J, HUANG L C, et al. PGL, Encoding Chlorophyllide a Oxygenase 1, Impacts Leaf Senescence and Indirectly Affects Grain Yield and Quality in Rice[J]. Journal of Experimental Botany, 2016, 67(5): 1297-1310.

    Google Scholar

    [38] MORITA R, SATO Y, MASUDA Y, et al. Defect in Non-yellow Coloring 3, an α/β Hydrolase-fold Family Protein, Causes a Stay-green Phenotype during Leaf Senescence in Rice[J]. The Plant Journal, 2009, 59(6): 940-952.

    Google Scholar

    [39] YOO S C, CHO S H, SUGIMOTO H, et al. Rice Virescent3 and Stripe1 Encoding the Large and Small Subunits of Ribonucleotide Reductase are Required for Chloroplast Biogenesis during Early Leaf Development[J]. Plant Physiology, 2009, 150(1): 388-401.

    Google Scholar

    [40] ZHANG Q, SHEN L, WANG Z W, et al. OsCAF1, a CRM Domain Containing Protein, Influences Chloroplast Development[J]. International Journal of Molecular Sciences, 2019, 20(18): 4386.

    Google Scholar

    [41] ZHOU Y, GONG Z Y, YANG Z F, et al. Mutation of the Light-Induced Yellow Leaf 1 Gene, which Encodes a Geranylgeranyl Reductase, Affects Chlorophyll Biosynthesis and Light Sensitivity in Rice[J]. PLoS One, 2013, 8(9): e75299.

    Google Scholar

    [42] LIU C H, ZHU H T, XING Y, et al. Albino Leaf 2 is Involved in the Splicing of Chloroplast Group Ⅰ and Ⅱ Introns in Rice Open Access[J]. Journal of Experimental Botany, 2016, 67(18): 5339-5347.

    Google Scholar

    [43] DU Z X, HAO H Y, HE J P, et al. GraS is Critical for Chloroplast Development and Affects Yield in Rice[J]. Journal of Integrative Agriculture, 2020, 19(11): 2603-2615.

    Google Scholar

    [44] HUANG R, WANG Y, WANG P R, et al. A Single Nucleotide Mutation of IspF Gene Involved in the MEP Pathway for Isoprenoid Biosynthesis Causes Yellow-green Leaf Phenotype in Rice[J]. Plant Molecular Biology, 2018, 96(1): 5-16.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  /  Tables(3)

Article Metrics

Article views(41) PDF downloads(15) Cited by(0)

Access History

Identification and Mining Candidate Gene for Yellow-green Leaf Mutant ygl20

    Corresponding author: LING Yinghua

Abstract: 

Leaf-color related mutants can directly influence the photosynthesis of plant, eventually affecting the grain yield and quality of rice. A novel yellow-green leaf mutant ygl20 (yellow-green leaf20), was screened from the mutant library of elite restorer line Xinong 1B chemically induced via EMS (ethyl methane sulphonate). Compared to the wild type (WT), plant height, secondary panicle branches, filled grains per panicle, setting rate, and 1000-grain weight of ygl20 significantly decreased (p < 0.05 or 0.01). ContentS of carotenoid (Car), chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (ChlT) of leaves of ygl20 were also extremely decreased (p < 0.01). The photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of the mutant were significantly lower than those of WT (p < 0.01), while intercellular CO2 concentration (Ci) was significantly increased (p < 0.05). The results of transmission electron microscopy showed that in the chloroplast of ygl20, number of osmiophilic corpuscles increased, the stacking density of grana was low, and the stromal lamellae was loose. The results of genetic analysis indicated that yellow-green leaf color of ygl20 was controlled by one pair of recessive nucleic genes. The map-based cloning was used to map and lone the YGL20. It was found that a G/T single base substitution of YGL20 led to the mutant phenotype of yellow-green leaf of ygl20, which coded a product of geranylgeranyl reductase (GGR). RT-qPCR results showed that YGL20 may be involved in the regulation network related to chlorophyll synthesis/metabolism. The results laid a foundation for further identification of the function of YGL20 gene.

  • 开放科学(资源服务)标识码(OSID):

  • 叶片是光合作用的主要器官,作物的光合产物是人类食物的主要来源[1]。叶色异常会影响水稻的光合作用效率及灌浆期中籽粒的形成,从而影响水稻的生长发育和产量[2]。水稻叶色通常表现为绿色,这是由叶绿素和类胡萝卜素等色素共同作用的结果。叶绿素缺乏或过多通常会引起叶色异常,表现为叶色变黄、变白、过绿或呈现出其他异常的颜色[3]。目前在水稻中克隆了许多与叶色相关的基因,主要参与叶绿素合成与降解、叶绿体发育和相关代谢途径、光信号与内源信号等其他途径,如叶绿素合成相关基因OsCAO1OsCAO2 [4]OsChlH[5]OsChlD[6]OsChlI[7]OsPORA[8]YGL1[9]YGL8[10]等,叶绿素降解相关基因SGR[11]OsPORB[8]NYC1[12]NYC4[13]等,叶绿体发育相关基因YSA[14]GRC1[15]ASL2[16]YGL2[17]GRY3[18]等,以及涉及其他调控途径的基因,如WLP2[19]OsAHL1[20]SPL35[21]等。

    叶色突变体是研究光合作用的理想材料,探索叶绿素合成途径和叶绿体发育及其他相关酶基因的调控,有助于了解叶色相关基因的调控网络和分子机制,如水稻黄叶基因YGL1,编码叶绿素合成酶,催化叶绿素酸酯植醇化,生成叶绿素a[22]。水稻苗期黄绿叶基因YGL2编码血红素加氧酶1,其突变体ygl2YGL2的表达显著减少,叶绿素和四吡咯中间体含量下降,一些与叶绿素生物合成和光合作用相关的基因表达水平发生改变,表明YGL2在水稻叶绿素生物合成中发挥着重要作用[23]YGL8基因编码镁原卟啉IX单酯环化酶(Mg PME)的一个催化亚基,参与叶绿素合成FLU-YGL8-LCAA-POR复合体的核心组分[10]NYC1NOL均编码短链脱氢酶/还原酶,并在体外发生相互作用,形成叶绿素b还原酶复合体,催化叶绿素b降解的第一步反应,在调节叶片衰老过程中叶绿素b降解和捕光复合体Ⅱ降解中发挥重要作用[12, 24]YGL6基因编码NAD(P)-结合的Rossmann折叠超家族蛋白质,通过蛋白产物的RNA结合功能参与叶绿体的发育过程[25]。另一个黄绿叶基因YGL8独立于叶绿素合成和光合系统,主要在叶片中高度表达,编码一个位于叶绿体的尿嘧啶核苷酸激酶,间接影响叶绿素的生物合成[26]

    调控水稻叶色变化是一个复杂而精细的过程,挖掘和鉴定更多的基因有利于深入了解这一过程并对其进行调控。本研究以EMS处理野生型西农1B(WT)获得的黄绿叶突变体ygl20为试验材料,对其进行表型鉴定、主要农艺性状研究、光合特性分析和细胞学观察,并利用缙恢10号与ygl20突变体杂交构建的分离群体进行遗传分析、基因定位及候选基因预测。此外,利用荧光实时定量PCR (qRT-PCR) 对突变体ygl20的部分相关基因进行表达水平分析。

1.   材料与方法
  • 黄绿叶突变体是由西农1B(籼型保持系)经EMS诱变获得的,表型稳定遗传,暂命名为yellow-green leaf20(ygl20)。利用优良恢复系缙恢10号与ygl20杂交,获得F1代种子,同年9月将F1代于海南水稻基地种植并收获F2代种子;次年3月将亲本与F2代群体于重庆北碚歇马实验基地种植。F1与F2代群体用于目标性状的遗传分析,F2代群体中的隐性植株用于目标基因的精细定位。

  • 自然条件下,于3月中旬在重庆北碚歇马实验基地播种野生型和黄绿叶突变体ygl20,4月下旬将二者各100株以株距17 cm、行距27 cm移栽至同一块试验田,观察全生育期植株表型;成熟期随机选取试验田非边行的10株野生型西农1B(WT)和10株突变体ygl20,对其株高、穗长、一次枝梗数、结实率及千粒质量等重要农艺性状进行考察。

  • 参照Shan等[27]的方法,经戊二醛和锇酸双重固定,乙醇梯度逐级脱水、置换、包埋后,制作超薄切片,采用醋酸双氧铀和柠檬酸铅液双染色,H600型透射电镜(Hitachi,Japan)观察叶片细胞超微结构。

  • 在抽穗期,随机选取长势一致的野生型WT和突变体ygl20各3株,根据Lichtenthaler[28]的方法测定倒1叶(Top1)、倒2叶(Top2)、倒3叶(Top3)的叶绿素a(Chla)、叶绿素b(Chlb)、总叶绿素(ChlT)、类胡萝卜素(Car)含量。

  • 在正常田间种植条件下,于抽穗期选择晴朗无云、温度稳定的天气进行试验:随机选取3株野生型WT和3株突变体ygl20,采用便携式光合测定仪(GFS-3000)测定其光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)等4个光合参数,并分析突变体与WT植株的光合效率。

  • 在整个生育期记录F2代所有植株的叶片颜色,分别统计与野生型WT和突变体ygl20叶色相似的个体,通过卡方检验对突变体ygl20进行遗传分析。所有材料的DNA通过CTAB[29]提取,并使用覆盖整个水稻基因组的400多对SSR和InDel标记进行亲本多态性分析,计算遗传距离(D),构建连锁图谱[30]

    式中:H为定位群体中杂合带型的单株数;A为正常带型的单株数;n为定位群体的隐性单株数。

  • 在孕穗期,通过总RNA提取纯化试剂盒(天根生化科技公司)从野生型WT和突变体ygl20叶片中提取总RNA,纯化并检测RNA浓度,按照RNA反转录试剂盒合成cDNA,采用qRT-PCR方法测定光合作用相关基因在野生型和突变体植株中的表达。

  • 本研究所有数据均采用Excel 2019进行整理和作图,并进行t检验,p<0.05表示差异有统计学意义。

2.   结果与分析
  • 在自然田间种植条件下,野生型西农1B(WT)在整个营养生长期和生殖生长早期至中期(正常生理老化阶段之前)都保持绿色,而突变体ygl20的所有叶片从第1叶即开始呈现黄绿色(图 1a1b)。ygl20叶片的黄绿色首先出现在叶尖,然后逐渐向中部延伸,最后到叶基部。从分蘖早期到籽粒灌浆期,ygl20的叶片,尤其是植株顶部的叶片,呈现出黄色偏多、绿色偏少的趋势(图 1c-1e)。ygl20的3个功能叶片中,Top1的黄化程度最显著,其次是Top2和Top3(图 1d1f)。

    成熟期的农艺性状鉴定结果显示,除一次枝梗数外,突变体ygl20的所有性状均显著降低(表 1)。与野生型WT相比,ygl20的分蘖数仅为5.30个,下降了41.76%(p<0.01);株高、二次枝梗数、每穗总粒数和每穗实粒数均减少了10%以上,差异达到显著或极显著水平;而穗长、结实率、千粒质量3个性状降低程度相对较轻,但差异也都达到显著或极显著水平(表 1)。

  • 在抽穗期,从野生型WT和突变体ygl20植株倒1叶(Top1)、倒2叶(Top2)和倒3叶(Top3)中提取叶绿素a(Chla)、叶绿素b(Chlb)、总叶绿素(ChlT)和类胡萝卜素(Car),结果显示,ygl20叶片中光合色素含量较WT均显著降低(p<0.01,图 2a-2c)。与WT相比,ygl20的Top1中Chla、Chlb、ChlT和Car质量分数分别下降了91.85%、93.95%、92.32%和79.60%,Top2中下降了84.43%、88.97%、85.49%和67.61%,Top3中下降了63.97%、60.72%、63.23%和56.69%。结果表明,突变体ygl20黄绿色表型主要是由叶片中光合色素含量极显著降低所致,且其Top1、Top2和Top3光合色素含量呈梯度降低,与其黄化程度减弱的表型相一致。

    为探讨叶片颜色变化对光合效率的影响,在抽穗期测定了野生型WT和突变体ygl20的光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)等4个光合参数。结果显示,ygl20PnGsTr分别下降了57.02%、28.04%、20.97%,均极显著低于WT(p<0.01,图 2d2e2g),Ci则显著增加(16.22%,p<0.05,图 2f),推测ygl20叶色变化引起Gs降低,从而使光合作用和蒸腾作用减弱,导致细胞间CO2浓度的积累。

  • 利用透射电镜对苗期野生型WT和突变体ygl20倒1叶中部进行观察,结果显示,WT和ygl20的叶肉细胞中均显示出发育良好的膜系统,叶绿体呈贴壁分布,体内有基粒片层。WT叶绿体基粒丰富,基质片层紧密排列(图 3a),但ygl20叶绿体中嗜饿小体增多,基粒堆积密度低,基质片层疏松,类囊体含有多个空泡(图 3b),表明ygl20叶绿体发育异常或遭到破坏。除叶绿体的变化外,WT的细胞内淀粉颗粒也比ygl20多(p<0.01,图 3g),说明WT的光合能力更强,导致淀粉颗粒在叶片细胞中积累更多。

  • 用叶片颜色正常的恢复系缙恢10号(JH10)与突变体ygl20杂交,F1代植株的叶色与JH10相同,F2代群体中则出现明显的分离,出现正常表型和黄绿叶表型。在被调查F2代群体的3 579株中,2 713株具有正常叶色,其余866株为突变样的黄绿叶。卡方测验结果显示,正常株与突变株的分离比为3.13,符合3∶1理论比例(χ2=1.23<χ0.05,0.012=3.84),表明突变体ygl20的黄绿叶性状由1对隐性核基因控制。

    从F2代群体中随机选取10株正常株和10株突变株,分别构建正常表型基因池和突变表型基因池。利用筛选到的80对JH10和西农1B之间的多态性标记,扩增亲本、正常基因池及突变基因池。结果表明,第2染色体长臂上的标记RM13986在两个基因池间存在差异,预测该标记可能与YGL20基因连锁。利用92株F2代黄绿叶单株验证,确定RM13986与YGL20连锁。在RM13986附近开发新的具有多态性的InDel和SSR标记,最终将YGL20基因初步定位在标记ZW2-12和RM13986之间(图 4a4b);进一步设计筛选标记对YGL20进行精细定位(表 2);最后检测到ZW2-12与RM13986标记区间存在重组的5个多态性标记ZW2-14、F26-9、ZW2-30、F90-52和ZW2-29(图 4b4c)。根据重组结果,将YGL20精细定位在ZW2-30与F90-52之间48 kb的物理范围内(图 4c)。

  • 根据Gramene数据库(www.gramene.org)的检索结果,在精细定位的物理区域内标注了5个开放阅读框ORFs(Open Reading Frame),即ORF1-5,分别编码淀粉合成酶Ⅱ、牻牛儿基牻牛儿基还原酶、含RWP-RK结构域的蛋白质、砷泵驱动ATP酶和硅内流转运蛋白基因(表 3)。

    为进一步确定目的基因,设计特异性引物,扩增野生型WT和突变体ygl20中上述5个ORF的基因序列。比对结果显示,ORF1和ORF3/4/5在WT和ygl20之间具有相同的序列,而在ORF2第1外显子470位,即LOC_Os02g51080,检测到从G(WT)到T(ygl20)的替换,导致编码的氨基酸从甘氨酸(Gly,WT)变为缬氨酸(Val,ygl20)(图 5a)。对Gramene数据库(Ref)中的序列进行进一步比对,并从WT和ygl20中扩增,结果显示,Ref和WT在470位点处具有相同的G碱基,而ygl20的所有拷贝在同一位置都具有变化的T碱基(图 5b)。除了470位点的碱基替换外,Ref、WT和ygl20的所有拷贝都具有相同的序列。综上所述,LOC_Os02g51080被预测为YGL20的候选基因。

    YGL20(LOC_Os02g51080) 具有3个外显子和2个内含子(图 5a),编码产物YGL20含有463个氨基酸,分子量为50 kDa(图 5c)。基于NCBI(https://www.ncbi.nlm.nih.gov/)的BLAST比对结果显示,YGL20在水稻中发挥着牻牛儿基牻牛儿基还原酶的功能(表 3)。

    由于LOC_Os02g51080被标注为光诱导黄叶1号,因此我们设计了遮光试验,以揭示YGL20控制的黄绿叶表型是否也有光诱导。结果显示,遮荫处理后的ygl20叶片中Chla、Chlb、ChlT和Car含量均高于WT处理,其中,ygl20的ChlT含量显著高于WT处理。此外,比较WT和ygl20植株倒1叶(Top1)遮荫部分和未遮荫部分叶绿素含量的变化,观察到在遮荫处理期间,有明显的光诱导颜色变化(图 6a6b)。

    遮荫处理8 d时,ygl20的4叶区Chla、Chlb、ChlT和Car含量均低于WT,但仅有Chlb和ChlT差异存在统计学意义(p<0.05,图 6d)。延长遮荫时间至16 d时,处理叶区中ygl20的Chla和ChlT含量显著高于WT(p<0.05,图 6e),与未遮荫处理和遮荫8 d的结果(图 6c6d)相反。遮荫处理的结果表明,ygl20的叶片颜色变化受光诱导,这一结果也进一步证实了LOC_Os02g51080YGL20的目标基因。

  • qRT-PCR结果表明,YGL20在根、茎、叶、叶鞘和幼穗等器官中均有表达,其中在叶片中的相对表达量最高,分别是叶鞘和茎的6.2倍和9.6倍,而在根和幼穗组织中相对表达量最低,显示出组织特异性的趋势(图 7a)。与野生型WT相比,YGL20基因在突变体ygl20中表达水平极显著降低;随着YGL20的表达变化,另17个光合作用相关基因也发生了相应的变化,即HEMA表达上调,其他16个基因表达下调(图 7b)。叶绿素代谢途径相关调控基因CHLMDVRCAO1PORAygl20中的表达量较WT分别下降了52.33%、57.52%、89.25%和31.22%。类胡萝卜素代谢途径相关基因PSY1PSY2ygl20中的表达量仅略有下降(图 7b)。光系统Ⅰ复合物(PSⅠ)、光系统Ⅱ复合物(PSⅡ)和细胞色素b6f复合物是类囊体膜上重要的蛋白质复合物,与WT相比,ygl20的3个PSⅠ编码基因(psaApsaBpsaC)、3个PSⅡ编码基因(psaApsaBpsaC)和2个细胞色素b6f编码基因(petApetB)的表达量均显著下调,相应的下调幅度分别为33.26%、36.51%、47.22%、40.35%、39.28%、47.36%、59.21%、77.65%(图 7b)。

3.   讨论与结论
  • 水稻叶片颜色突变是常见的突变性状,通常发生在苗期,表现为叶片颜色从正常绿色到不同的异常表型,如黄色、浅黄色、浅绿色、条纹、斑点和白化[31-32]。叶绿素是光合作用必不可少的分子,负责在天线系统中收集和传输太阳能,以及在反应中心实现电荷分离和电子传递[33]。光合色素含量直接影响光合效率,最终反映在作物产量的相关性状上[34],因此叶色是作物育种中重要的性状之一,叶绿体发育与调控的分子机制在分子生物学和遗传学领域得到了广泛的研究[35]

    叶色相关基因突变通常会直接或间接影响叶绿素的合成与降解[36]OsCAO编码叶绿素a加氧酶,从水稻中分离到两个同源基因OsCAO1OsCAO2,参与叶绿素a合成叶绿素b的催化过程。突变后,叶绿素含量降低,叶绿素a/叶绿素b比值升高,叶片呈浅绿色[37]OsPORAOsPORB是水稻中的NADPH(原叶绿素酸脂氧化还原酶A和B),催化叶绿素合成中的原叶绿素酸酯还原成叶绿素酸酯,也是黄化质体中原片层体形成所必需。OsPORB在整个叶片发育过程中,尤其在高光照下,是叶绿素合成所必需,而OsPORA主要在叶片发育早期起作用[8]OsSGR编码产物属于一类古老的蛋白,含有一段预测的叶绿体转运肽。OsSGR可能参与调节或直接介导脱镁叶绿酸加氧酶(PaO)的活性,也可能影响叶绿素的分解和色素蛋白复合物的降解,其突变后叶片呈现永绿色[11]。本研究中黄绿叶突变体ygl20整个生育期均呈现黄绿色,且倒1叶黄化程度最严重。光合色素测定表明,与野生型WT相比,孕穗期ygl20叶片中Chla、Chlb、ChlT和Car含量显著降低,表明ygl20的黄绿叶表型可能是由于叶绿素和类胡萝卜素含量极显著降低所致。ygl20植株叶片黄化程度在倒1、2、3叶依次减弱,可能是由于倒1、2、3叶光合色素含量依次增加所致。定量分析结果显示,psaApsaBpsaCygl20中的表达量显著低于WT,psbApsbBpsbC是PSⅡ反应中心蛋白的主要成分,表达量也显著下调,表明ygl20中编码PSⅠ和PSⅡ相关蛋白表达量的下调可能会影响其正常功能,阻碍对光的响应,导致ygl20叶片光合速率降低,因此推测YGL20基因突变影响光合色素的合成和正常的光合作用过程,最终导致叶片黄化、光合速率降低。

    在水稻分子生物学和遗传学研究中,由于基因突变具有随机性,许多基因具有多个突变位点。不同的突变位点可能引起叶绿体发育和色素含量差异,从而导致突变植株出现不同的表型[38-39]。随着越来越多的等位基因被发现,对多个等位基因的研究不仅有助于对该基因进行系统完整的研究,还有助于对该基因功能进行更为详尽地认识和补充,为进一步研究叶绿素分子合成和叶色调控网络提供新的信息。本研究中的候选基因YGL20(LOC_Os02g51080)被定位于第2染色体长臂,位于SSR标记ZW2-30和F90-52之间约48 kb的区域内。该基因可能是水稻黄绿叶基因LYL1YGL2的等位基因。LYL1编码牻牛儿基牻牛儿基还原酶,参与了水稻牻牛儿基牻牛儿基叶绿素(Chl-geranylgeranylated,ChlGG)和牻牛儿基牻牛儿基焦磷酸(Geranylgeranyl Pyrophosphate,GGPP)到叶绿素叶绿醇(Chl-phytol,Chlphy)和植基焦磷酸(Phytyl Pyrophosphate,PPP)的还原步骤[40]lyl1-1突变体的LYL1基因在第1外显子182 bp处由C变为T,导致编码蛋白的丙氨酸残基变为缬氨酸,突变体植株在整个生育期表现为动态的黄叶表型[41]YGL2同样编码牻牛儿基牻牛儿基还原酶,在突变体ygl2中,位于YGL2第3外显子的单个碱基变化(T1361G),导致编码产物的错义突变(L454R)[42]。与LYL1YGL2相比,YGL20的突变位置有一定差异,其在第1外显子第470位碱基由G变成T,导致蛋白序列的第157位氨基酸由甘氨酸变为缬氨酸,候选基因可能是LYL1YGL2的等位基因[43]

    叶色突变体特征明显,易于识别,可作为叶色标记用于良种繁育[44]YGL20编码牻牛儿基牻牛儿基还原酶,目前对该酶的研究甚少,水稻作为单子叶模式作物,克隆并研究其酶学功能和作用机制对进一步揭示叶绿素生物合成具有重要意义,因此,ygl20可作为进一步研究叶绿素合成和叶色分子机制的遗传材料。

  • ygl20全生育期叶片呈黄绿色,同时光合色素含量和光合速率降低。叶片黄化导致分蘖数、株高、穗长、一次枝梗数、每穗实粒数及千粒质量下降。ygl20的叶色受1对隐性核基因控制,YGL20位于第2染色体标记ZW2-30和F90-52之间约48 kb的物理距离内,包含5个注释基因。序列比对发现,编码牻牛儿基牻牛儿基还原酶LOC_Os02g51080YGL20靶标。qRT-PCR结果显示,YGL20主要在叶片中表达,其表达的显著下调严重影响了光合色素代谢及光合相关基因的表达。

Figure (7)  Table (3) Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return