Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 3
Article Contents

Jia-jia LI, Xi WANG, Hong ZHANG, et al. A Two-Level Linearized Difference Scheme for Rosenau-KdV-RLW Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(3): 5-11. doi: 10.13718/j.cnki.xsxb.2019.03.002
Citation: Jia-jia LI, Xi WANG, Hong ZHANG, et al. A Two-Level Linearized Difference Scheme for Rosenau-KdV-RLW Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(3): 5-11. doi: 10.13718/j.cnki.xsxb.2019.03.002

A Two-Level Linearized Difference Scheme for Rosenau-KdV-RLW Equation

More Information
  • Received Date: 02/04/2018
    Available Online: 20/03/2019
  • MSC: O241.82

  • In this paper, the numerical solution of initial-boundary value problem for Rosenau-KdV-RLW equation with homogeneous boundary has been considered.A two-level linearized difference scheme with the second order has been proposed.The difference scheme simulates the conservation property of the problem quite well.The existence and uniqueness of the difference solutions have also beenproved.In the case that the maximum mold estimator of the difference solutions cannot be obtained, it is proved that the difference scheme is convergent and stable by mathematical induction and the discrete function analysis.And the results are demonstrated by the numerical examples.
  • 加载中
  • [1] ZHENG M B, ZHOU J.An Average Linear Difference Scheme for the Generalized Rosenau-KdV Equation[J].Journal of Applied Mathematics, 2014, 2014(2):1-9.

    Google Scholar

    [2] 胡劲松, 谢小平, 胡兵, 等.Rosenau-KdV方程的Crank-Nicolson守恒差分格式[J].高等学校计算数学学报, 2015, 37(4):360-369.

    Google Scholar

    [3] ALEJANDRO A F, RAMOS J I.Numerical Solution of the Generalized, Dissipative KdV-RLW-Rosenau Equation with a Compact Method[J].Communications in Nonlinear Science and Numerical Simulation, 2018, 60:165-183. doi: 10.1016/j.cnsns.2018.01.010

    CrossRef Google Scholar

    [4] SANCHEZ P, EBADI G, MOJAVER A, et al.Solitons and Other Solutions to Perturbed Rosenau-KdV-RLW Equation with Power Law Nonlinearity[J].Acta Physica Polonica A, 2015, 127(6):1577-1586. doi: 10.12693/APhysPolA.127.1577

    CrossRef Google Scholar

    [5] RAZBOROVA P, AHMED B, BISWAS A.Solitons, Shock Waves and Conservation Lawes of Rosenau-KdV-RLW Equation with Power Law Nonlinearity[J].Applied Mathematics and Information Sciences, 2014, 8(2):485-491. doi: 10.12785/amis/080205

    CrossRef Google Scholar

    [6] PEREGRINE D H.Calculations of the Development of an Undular Bore[J].Journal of Fluid Mechanics, 1966, 25(2):321-330. doi: 10.1017/S0022112066001678

    CrossRef Google Scholar

    [7] PAN X T, WANG Y J, ZHANG L M.Numerical Analysis of a Pseudo-Compact C-N Conservative Scheme for the Rosenau-KdV Equation Coupling with the Rosenau-RLW Equation[J].Boundary Value Problems, 2015, 2015(1):65-82. doi: 10.1186/s13661-015-0328-2

    CrossRef Google Scholar

    [8] WONGSAIJAI B, POOCHINAPAN K.A Three-Level Average Implicit Finite Difference Scheme to Solve Equation Obtained by Coupling the Rosenau-KdV Equation and the Rosenau-RLW Equationy[J].Applied Mathematics and Computation, 2014, 245:289-304. doi: 10.1016/j.amc.2014.07.075

    CrossRef Google Scholar

    [9] TURGUT A, KARAKOC S B G, BISWAS A.Numerical Scheme to Dispersive Shallow Water Waves[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(10):7084-7092. doi: 10.1166/jctn.2016.5675

    CrossRef Google Scholar

    [10] 卓茹, 李佳佳, 黄妗肜, 等.求解广义Rosenau-KdV-RLW方程的守恒差分格式[J].四川大学学报(自然科学版), 2017, 54(4):703-707. doi: 10.3969/j.issn.0490-6756.2017.04.007

    CrossRef Google Scholar

    [11] WANG X F, DAI W Z.A Three-Level Linear Implicit Conservative Scheme for the Rosenau-KdV-RLW Equation[J].Journal of Computational and Applied Mathematics, 2018, 330:295-306. doi: 10.1016/j.cam.2017.09.009

    CrossRef Google Scholar

    [12] ZHOU Y L.Applications of Discrete Functional Analysis to the Finite Difference Method[J].Fourier, 1990, 8(1):49-65.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(2)

Article Metrics

Article views(1077) PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

A Two-Level Linearized Difference Scheme for Rosenau-KdV-RLW Equation

Abstract: In this paper, the numerical solution of initial-boundary value problem for Rosenau-KdV-RLW equation with homogeneous boundary has been considered.A two-level linearized difference scheme with the second order has been proposed.The difference scheme simulates the conservation property of the problem quite well.The existence and uniqueness of the difference solutions have also beenproved.In the case that the maximum mold estimator of the difference solutions cannot be obtained, it is proved that the difference scheme is convergent and stable by mathematical induction and the discrete function analysis.And the results are demonstrated by the numerical examples.

  • 在进行非线性波动方程研究时,为了克服KdV方程不能描述波-波及波-墙相互作用关系的不足,文献[1-2]提出了Rosenau-KdV方程.作为非线性波的进一步考虑,得到了Rosenau-KdV-RLW方程[3-5]

    方程(1)因描述了大量的物理现象而占有重要地位[6].

    本文考虑如下一类Rosenau-KdV-RLW方程初边值问题:

    其中u0(x)是一个已知的光滑函数.问题(2)-(4)具有如下守恒律[3-5]

    其中Q(0)为仅与初始条件有关的常数.

    文献[7]对方程(1)提出了一个两层非线性差分格式,但数值求解时需要迭代;文献[8]对方程(1)提出了一个三层线性差分格式,但该格式不是自启动的;文献[9-11]又进一步对方程(1)的广义形式进行了数值研究.本文对问题(2)-(4)提出了一个新的具有二阶理论精度的两层线性化差分格式,并合理地模拟了守恒律,数值算例表明该格式是可靠的.

1.   差分格式及其守恒律
  • 对区域[xLxR]×[0,T]作网格剖分,取空间步长$ h=\frac{{{x}_{R}}-{{x}_{L}}}{J} $,时间步长为τxj=xL+jh(0≤jJ),tn=(n=0,1,2,…,N$ N=\left[ \frac{T}{\tau } \right] $).记ujn=u(xjtn),Ujnu(xjtn)和Zh0={U=(Uj)|U-1=U0=UJ=UJ+1=0,j=-1,0,…,JJ+1},用C表示与τh无关的一般正常数(即在不同地方可以有不同的取值),并定义如下记号:

    对问题(2)-(4)考虑如下有限差分格式:

    定理1  设u0H02,则差分格式(6)-(8)关于以下离散能量是守恒的,即

    其中n=1,2,…,N.

      将(6)式两端乘以h然后对j从1到J-1求和,得

    根据边界条件(8)和分部求和公式[12],有

    将(11)-(15)式代入(10)式,整理有

    Qn的定义,将(16)式对n递推可得(9)式.

2.   差分格式的可解性
  • 定理2  若时间步长τ充分小,则差分格式(6)-(8)是唯一可解的.

      用数学归纳法.显然U0是由初始条件(7)式唯一确定的.假设Un(nN-1)是唯一可解的,可设

    现在来考虑方程(6)中的Un+1,有

    将(18)式与Un+1作内积,由边界条件(8)式和分部求和公式[12]

    将(20)-(22)式代入(19)式,整理有

    于是只要取τ足够小,使得当1- > 0时,方程组(18)仅有零解.因此,差分格式(6)-(8)中的Ujn+1是唯一可解的.

3.   差分格式收敛性和稳定性
  • 差分格式(6)-(8)的截断误差定义如下:

    由Taylor展开可知,当hτ→0时,

    引理1[10]  设u0H1,则初边值问题(2)-(4)的解满足:

    定理3  设u0H1,若时间步长τ和空间步长h充分小,则差分格式(11)-(13)的解Un以‖·‖收敛到初边值问题(2)-(4)的解,且收敛阶为O(τ2+h2).

      用数学归纳法.

    ejn=ujnUjn,由(23)式减去(6)式,有

    其中

    由引理1以及(26)式知,存在与τh无关的常数CuCr,使得

    再由(28)式以及初始条件(7)可得到以下估计式:

    现在假设

    其中Cl(l=1,2,…,n)为与τh无关的常数.则由离散Sobolev不等式[12]和Cauchy-Schwarz不等式,有

    将(27)式两端与$ {{e}^{n+\frac{1}{2}}} $作内积,由边界条件(29)和分部积分和公式[12]整理得

    由引理1以及微分中值定理,有

    再取τh充分小,使

    于是,由(34),(36)式和(37)式以及Cauchy-Schwarz不等式有

    将(38)-(42)式代入(35)式,由边界条件(29)式和分部求和公式[12],整理得

    将(43)式从1到n递推求和,并整理有

    由(30)式有

    将(32),(45)式代入(44)式,利用离散Gronwall不等式[12],取时间步长充分小以满足:

    于是有

    其中

    显然Cn+1为与n无关的常数.从而由归纳假设有

    最后由离散Sobolev不等式[12],有

    定理4  设u0H1ρ0L2,若时间步长τ和空间步长h充分小,则差分格式(6)-(8)的解满足:

    其中$ {{\tilde{C}}_{0}} $是与τh无关的常数.

    定理5  在定理3的条件下,差分格式(6)-(8)的解Un以‖·‖关于初值无条件稳定.

4.   数值实验
  • 方程(1)的孤波解[3]

    在计算中,取初值函数u0(x)=u(x,0),固定xL=-30,xR=120,T=40.就τh的不同取值对数值解和孤波解在几个不同时刻的误差见表 1,对守恒律(5)的数值模拟见表 2.

    从数值算例可以看出,本文对初边值问题(2)-(4)提出的差分格式(6)-(8)是有效的.

Table (2) Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return