Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 8
Article Contents

Hui LÜ, Yong-gui LUO, Ping ZHAO. On Rank and Relative Rank of the Semigroup $\mathscr{O}$$\mathscr{I}$(n, r)k[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 11-17. doi: 10.13718/j.cnki.xsxb.2019.08.003
Citation: Hui LÜ, Yong-gui LUO, Ping ZHAO. On Rank and Relative Rank of the Semigroup $\mathscr{O}$$\mathscr{I}$(n, r)k[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 11-17. doi: 10.13718/j.cnki.xsxb.2019.08.003

On Rank and Relative Rank of the Semigroup $\mathscr{O}$$\mathscr{I}$(n, r)k

More Information
  • Received Date: 20/09/2018
    Available Online: 20/08/2019
  • MSC: O152.7

  • Let $\mathscr{OI}$nk be the semigroup of all bilateral k type-order-preserving one-to-one partial transformations on a finite-chain [n] (n>3), and let $\mathscr{OI}$(n, r)k={α∈ $\mathscr{OI}$nk:|im(α)|≤r} be the two-sided ideal of the semigroup $\mathscr{OI}$(n, r)k for an arbitrary integer k, r such that 1 ≤ kn-1, 0 ≤ rn-1. By analyzing the elements of rank r and Green's relations, the minimal generating sets and the rank of the semigroup $\mathscr{OI}$(n, r)k are obtained, respectively. Furthermore, the relative rank of the semigroup $\mathscr{OI}$(n, r)k with respect to itself each ideal $\mathscr{OI}$(n, l)k is determined for 0lr.
  • 加载中
  • [1] 罗永贵, 游泰杰, 高荣海.关于OInDOIn的理想的生成集及其秩[J].贵州师范大学学报(自然科学版), 2012, 30(2):54-58. doi: 10.3969/j.issn.1004-5570.2012.02.012

    CrossRef Google Scholar

    [2] 吴金艳, 赵平, 游泰杰.半群OIn的偏度秩[J].西南大学学报(自然科学版), 2015, 37(10):67-71.

    Google Scholar

    [3] 罗永贵.半群W(n, r)的非群元秩和相关秩[J].山东大学学报(理学版), 2013, 48(12), 70-74.

    Google Scholar

    [4] 罗永贵.半群WD(n, r)的非群元秩和相关秩[J].四川师范大学学报(自然科学版), 2017, 40(3), 308-312. doi: 10.3969/j.issn.1001-8395.2017.03.005

    CrossRef Google Scholar

    [5] 罗永贵, 杨丛丽.半群U(n, r)的秩和拟幂等元秩[J].四川师范大学学报(自然科学版), 2015, 38(4):508-513. doi: 10.3969/j.issn.1001-8395.2015.04.008

    CrossRef Google Scholar

    [6] 易林, 游泰杰, 赵平.半群OIn(k)的秩[J].数学的实践与认识, 2017, 47(6):251-255.

    Google Scholar

    [7] 易林, 游泰杰, 赵平.半群OIn(k, m)的秩[J].四川师范大学学报(理学版), 2018, 41(1):19-23.

    Google Scholar

    [8] 李先崇, 赵平.半群POn(k)的幂等元秩[J].西南师范大学学报(自然科学版), 2013, 38(10):9-12.

    Google Scholar

    [9] 张传军, 朱华伟.半群Sn(k)的秩[J].西南大学学报(自然科学版), 2017, 39(6):60-68.

    Google Scholar

    [10] 张传军, 赵平.半群On(k)的秩[J].数学的实践与认识, 2014, 44(9):243-247.

    Google Scholar

    [11] 张传军, 朱华伟, 肖宏治.半群POn(k, m)的秩[J].西南师范大学学报(自然科学版), 2016, 41(6):6-11.

    Google Scholar

    [12] HOWIEJM. Fundamentals of Semigroup Theory[M]. Oxford:Oxford University Press, 1995.

    Google Scholar

    [13] GANYUSHKINO, MAZORCHUKV. Classical Finite Transformation Semigroups[M]. London:Springer-Verlag, 2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2526) PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

On Rank and Relative Rank of the Semigroup $\mathscr{O}$$\mathscr{I}$(n, r)k

Abstract: Let $\mathscr{OI}$nk be the semigroup of all bilateral k type-order-preserving one-to-one partial transformations on a finite-chain [n] (n>3), and let $\mathscr{OI}$(n, r)k={α∈ $\mathscr{OI}$nk:|im(α)|≤r} be the two-sided ideal of the semigroup $\mathscr{OI}$(n, r)k for an arbitrary integer k, r such that 1 ≤ kn-1, 0 ≤ rn-1. By analyzing the elements of rank r and Green's relations, the minimal generating sets and the rank of the semigroup $\mathscr{OI}$(n, r)k are obtained, respectively. Furthermore, the relative rank of the semigroup $\mathscr{OI}$(n, r)k with respect to itself each ideal $\mathscr{OI}$(n, l)k is determined for 0lr.

  • 设[n]={1,2,…,n-1,n}(n≥4),并赋予自然数的大小序.$\mathscr{I}$n$\mathscr{S}$n分别表示[n]上的对称逆半群和对称群,$\mathscr{SI}$n=$\mathscr{I}$n\$\mathscr{S}$n是[n]上的部分一一奇异变换半群.设α$\mathscr{SI}$n,若对任意的xy∈dom(α),由xy可推出,则称α是保序的.设$\mathscr{O}$nTn中所有保序变换之集(不含[n]上的恒等变换),则$\mathscr{O}$nTn的子半群,称$\mathscr{O}$n为[n]上的保序变换半群;记$\mathscr{OI}$n为保序对称逆半群$\mathscr{I}$n\$\mathscr{S}$n中所有保序变换之集,则$\mathscr{OI}$n$\mathscr{I}$n\$\mathscr{S}$n的逆子半群,称$\mathscr{OI}$n为保序严格部分一一变换半群.设k是[n]上的一个固定点,令

    则称$\mathscr{OI}$nk为[n]上双边k型-保序严格部分一一变换半群.记

    易见$\mathscr{OI}$(nr)k$\mathscr{OI}$nk的子半群,且对任意的α$\mathscr{OI}$(nr)kβγ$\mathscr{OI}$(nr)k,均有|im(βαγ)|≤r,即βαγ∈$\mathscr{OI}$(nr)k,因而$\mathscr{OI}$(nr)k$\mathscr{OI}$nk的双边理想.

    通常有限半群S的秩定义为rank(S)=min{|A|:AS,〈A〉=S}.半群S及其子半群V之间的相关秩定义为r(SV)=min{|A|:ASAV=ϕ,〈AV〉=S},易见r(SS)=0.对于有限半群的秩及其相关秩的研究目前已有许多结果[1-13].文献[1]考虑了[n]上的保序有限部分一一奇异变换半群$\mathscr{OI}$n的理想$\mathscr{K}$$\mathscr{O}$(nr)={α$\mathscr{OI}$n:|im(α)|≤r}(0≤rn-1)的生成集和秩,确定了半群$\mathscr{K}$$\mathscr{O}$(nr)的秩为Cnr.文献[2]考虑了半群$\mathscr{OI}$nm偏度秩存在时一定等于n.文献[3-5]考虑了几类不同保序变换半群的秩和相关秩.文献[6-11]研究了几类具有k型-特征的变换半群的秩.

    本文在文献[1-11]的基础上继续考虑双边k型-保序严格部分一一变换半群$\mathscr{OI}$nk的双边理想$\mathscr{OI}$(nr)k的秩和相关秩,证明了如下主要结果:

    定理1  设n≥3,0≤rn-1,则$\mathscr{K}$r$\mathscr{OI}$(nr)k的生成集,即$\mathscr{OI}$(nr)k=〈rankr〉.

    定理2  设n≥3,0≤rn-1,则rank($\mathscr{OI}$(nr)k)=Cnr.

    定理3  设n≥3,0≤lrn-1,则$r\left(\mathscr{O} \mathscr{I}_{(n, r)}^{k}, \mathscr{O} \mathscr{I}_{(n, l)}^{k}\right)=\left\{\begin{array}{ll}{0} &\;\;\;\;{l=r} \\ {C_{n}^{r}} & {0 \leqslant l < r}\end{array}\right.$.

1.   预备知识
  • A是自然序集[n]的非空子集,设α$\mathscr{OI}$(nr)k,用im(α)表示α的象集,ker(α)表示dom(α)上的如下等价关系:ker(α)={(xy)∈dom(α)×dom(α):=}.对任意的t∈im(α),-1表示t的原象集且|-1|=1.若|im(α)|=r,1≤rn-1,则由双边k型-保序性容易验证α有如下表示法:

    其中a1 < a2 < … < ai-1 < aik < ai+1 < … < arb1 < b2 < … < bi-1 < bik < bi+1 < … < br,易证α是正则元,且$\mathscr{OI}$nk是正则半群.易见对任意的i∈{1,2,…,r},当ai=bi时,α是半群$\mathscr{OI}$nk的幂等元.

    为叙述方便,这里引用Green-等价关系,不难验证,在半群$\mathscr{OI}$(nr)k$\mathscr{L}$$\mathscr{R}$$\mathscr{D}$$\mathscr{K}$[1]有如下刻划:对任意的αβ$\mathscr{OI}$(nr)k,有

    (ⅰ) (αβ)∈$\mathscr{L}$当且仅当im(α)=im(β);

    (ⅱ) (αβ)∈$\mathscr{R}$当且仅当ker(α)=ker(β);

    (ⅲ) (αβ)∈$\mathscr{D}$当且仅当|im(α)|=|im(β)|且|im(α)∩[1,k]|=|im(β)∩[1,k]|;

    (ⅳ) (αβ)∈$\mathscr{K}$当且仅当|im(α)|=|im(β)|.

    易证$\mathscr{K} = \mathop \cup \limits_{i = 1}^S {\mathscr{D}_i}$,其中$s = \left\{ {\begin{array}{*{20}{l}} {r + 1} & {k \ge r, n - k \ge r}\\ {n - k + 1} & {k \ge r, n - k < r}\\ {k + 1} & {k < r, n - k \ge r}\\ {n - r + 1} & {k < r, n - k < r} \end{array}} \right.$

    易见$\mathscr{L}$$\mathscr{K}$$\mathscr{R}$$\mathscr{K}$.记$\mathscr{K}$r={α$\mathscr{OI}$(nr)k:|im(α)|=r},0≤rn-1,1≤kn-1.显然$\mathscr{K}$0$\mathscr{K}$1$\mathscr{K}$2,…,$\mathscr{K}$r-1$\mathscr{K}$r恰好是$\mathscr{OI}$(nr)kr+1个$\mathscr{K}$-类,不难验证$\mathscr{OI}_n^k = \bigcup\limits_{i = 1}^r {{\mathscr{K}_i}} $是具有包含关系$\mathscr{OI}$(n,0)k$\mathscr{OI}$(n,1)k⊂…⊂$\mathscr{OI}$(nn-1)k=$\mathscr{OI}$nk的双边理想链.

    定义1  用Xn(r)表示自然序集[n]={1,2,3,…,n-1,n}(n≥4)的所有r元子集,则Xn(r)中共有Cnr(其中Cnr表示从n个元素中取出r个元素的组合数)个元素.令t=Cnr,记Xn(r)={A1A2,…,At},其中Ai={a1 < a2 < … < ai < … < ar},Ai⊆[n]且|Ai|=r(i=1,2,…,t-1,t).将Xn(r)按照不同$\mathscr{D}$关系分类,记为[D]={ADXn(r):|A∩[1,k]|=|D∩[1,k]|}.进一步可证:对于任意的αβ∈ [D],其中$\alpha = \left({\begin{array}{*{20}{l}} {{A_i}}\\ {{A_j}} \end{array}} \right)$$\beta = \left({\begin{array}{*{20}{l}} {{A_p}}\\ {{A_q}} \end{array}} \right)$,可知|Aj|=|Aq|且|Aj∩[1,k]|=|Aq∩[1,k]|.

    本文未定义的术语及符号参见文献[12-13].

2.   定理的证明
  • 引理1  对0≤r≤1,有$\mathscr{K}$r$\mathscr{K}$r+1· $\mathscr{K}$r+1.

      用ϕ表示空变换,则$\mathscr{K}$0={ϕ},令$\beta = \left({\begin{array}{*{20}{l}} 1\\ 1 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} 2\\ 2 \end{array}} \right)$,则βγ$\mathscr{K}$1ϕ=βγ,于是$\mathscr{K}$0$\mathscr{K}$1· $\mathscr{K}$1.

    对任意α$\mathscr{K}$1,不妨设$\alpha = \left({\begin{array}{*{20}{l}} a\\ b \end{array}} \right)$$\mathscr{OI}$nk,注意到n≥4,取c∈[n]\{a},分以下情况证明$\mathscr{K}$1$\mathscr{K}$2· $\mathscr{K}$2.

    情形1  a < ck=1

    a=k=1时,易知b=1,令$\beta = \left({\begin{array}{*{20}{l}} 1 & c\\ 1 & 2 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} 1 & 3\\ b & 3 \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    a≠1时,易知b≠1,令$\beta = \left({\begin{array}{*{20}{l}} a & c\\ 2 & 3 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} 1 & 2\\ {b - 1} & b \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    情形2  a < ck≠1

    ak < c时,易知bk,令$\beta = \left({\begin{array}{*{20}{l}} a & c\\ b & c \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} b & {c + 1}\\ b & {c + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    a < ck时,易知bk,令$\beta = \left({\begin{array}{*{20}{c}} a & c\\ {k - 1} & k \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} {k - 1} & {k + 1}\\ b & {k + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    k < a < c时,易知b>k,令$\beta = \left({\begin{array}{*{20}{c}} a & c\\ {k + 1} & {k + 2} \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} k & {k + 1}\\ k & b \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    情形3  a>c且k=1

    c=k=1时,令$\beta = \left({\begin{array}{*{20}{l}} c & a\\ 1 & 2 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} 2 & 3\\ b & {b + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    c≠1时,易知1 < c < ab>1,令$\beta = \left({\begin{array}{*{20}{l}} c & a\\ 2 & 3 \end{array}} \right), \gamma = \left({\begin{array}{*{20}{l}} 1 & 3\\ 1 & b \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    情形4  a>ck≠1

    ck < a时,易知b>k,令$\beta = \left({\begin{array}{*{20}{c}} c & a\\ k & {k + 1} \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} {k + 1} & {k + 2}\\ b & {b + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    k < c < a时,易知b>k,令$\beta = \left({\begin{array}{*{20}{c}} c & a\\ {k + 1} & {k + 2} \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} 1 & {k + 2}\\ 1 & b \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    c < ak时,易知bk,令$\beta = \left({\begin{array}{*{20}{c}} c & a\\ {k - 1} & k \end{array}} \right), \gamma = \left({\begin{array}{*{20}{c}} k & {k + 1}\\ b & {k + 1} \end{array}} \right)$,则βγ$\mathscr{K}$2α=βγ.

    综上所述,对0≤r≤1,有$\mathscr{K}$r$\mathscr{K}$r+1· $\mathscr{K}$r+1.

    引理2  对2≤rm-1,3≤mn-1,有$\mathscr{K}$r$\mathscr{K}$r+1· $\mathscr{K}$r+1.

      任取

    其中a1 < a2 < … < ai-1 < aik < ai+1 < … < arb1 < b2 < … < bi-1 < bik < bi+1 < … < br,0≤ir,令a0=0.

    以下分两种情况证明α$\mathscr{K}$r+1· $\mathscr{K}$r+1.

    情形1  α为幂等元.

    显然α是dom(α)上的恒等变换.由rn-2可知,|[n]\dom(α)|≥2.任取x1x2∈[n]\dom(α).设ε1ε2分别为dom(ε1)=dom(α)∪{x1},dom(ε2)=dom(α)∪{x2}上的恒等变换,则ε1ε2E($\mathscr{K}$r+1)且α=ε1ε2.

    情形2  α为非幂等元.

    α的标准表示可知,当i=0或i=r时,α$\mathscr{OI}$n.由文献[1]的引理4易知,存在βγ$\mathscr{K}$r+1,使得α=βγ.下证0 < i < r,可分3种子情形讨论:

    情形2.1  |{1,2,…,k}\{a1a2,…,ai}|=0,|{k+1,k+2,…,n}\{ai+1ai+2,…,ar}|≠0.因α$\mathscr{K}$r且2≤rn-2,可知2≤|{k+1,k+2,…,n}\{ai+1ai+2,…,ar}|≤n-k.即

    arn且brn时,令

    βγ$\mathscr{K}$r+1α=βγ.

    arn且br=n时,由2≤rn-2知,存在p∈{ii+2,…,r-1},使得bp+1-bp>1.令

    βγ$\mathscr{K}$r+1α=βγ.

    ar=n且brn时,由2≤rn-2知,存在p∈{ii+2,…,r-1},使得ap+1-ap>1.令

    βγ$\mathscr{K}$r+1α=βγ.

    ar=n且br=n时,由2≤rn-2知,存在pq∈{ii+2,…,r-1},使得ap+1-ap>1,bq+1-bq>1.当p < q时,令

    βγ$\mathscr{K}$r+1α=βγ.同理可证,当pq时,结论仍然成立.

    情形2.2  |{1,2,…,k}\{a1a2,…,ai}|≠0,|{k+1,k+2,…,n}\{ai+1ai+2,…,ar}|=0.因α$\mathscr{K}$r且2≤rn-2,可知2≤|{1,2,…,k}\{a1a2,…,ai}|≤k.即

    a1≠1且b1≠1时,令

    βγ$\mathscr{K}$r+1α=βγ.

    a1≠1且b1=1时,由2≤rn-2知,存在p∈{1,2,…,i-1},使得bp+1-bp>1.令

    βγ$\mathscr{K}$r+1α=βγ.

    a1=1且b1≠1时,由2≤rn-2知,存在p∈{1,2,…,i-1},使得ap+1-ap>1.令

    βγ$\mathscr{K}$r+1α=βγ.

    a1=1且b1=1时,由2≤rn-2知,存在pq∈{1,2,…,i-1},使得ap+1-ap>1,bp+1-bp>1,当p < q时,令

    βγ$\mathscr{K}$r+1α=βγ.同理可证,当pq时,结论仍然成立.

    情形2.3 |{1,2,…,k}\{a1a2,…,ai}|≠0,|{k+1,k+2,…,n}\{ai+1ai+2,…,ar}|≠0.由rn-2可得,存在两个不同元素xy∈[n],使得x∈{1,2,…,k}\{a1a2,…,ai},y∈{k+1,k+2,…,n}\{bi+1bi+2,…,br}.假设ap < x < ap+1(p∈{1,2,…,i}),bq < y < bq+1(q∈{i+1,i+2,…,r-1}),令

    βγ$\mathscr{K}$r+1α=βγ.

    综上所述,α$\mathscr{K}$r+1· $\mathscr{K}$r+1,再由α的任意性可得$\mathscr{K}$r$\mathscr{K}$r+1· $\mathscr{K}$r+1.

    定理1的证明  由引理1引理2可知,任意的α$\mathscr{OI}$(nr)k可以表达成$\mathscr{OI}$(nr)k的顶端$\mathscr{K}$-类$\mathscr{K}$r中秩为r的若干元素的乘积或α$\mathscr{K}$r.换句话说,$\mathscr{K}$r$\mathscr{OI}$(nr)k的生成集,即$\mathscr{OI}$(nr)k=〈 $\mathscr{K}$r〉.

    引理3  设αβ$\mathscr{OI}$(nr)k,若(αβ)∈ $\mathscr{K}$且(ααβ)∈ $\mathscr{K}$,则(αββ)∈ $\mathscr{L}$,(ααβ)∈ $\mathscr{R}$.

      设αβ$\mathscr{OI}$(nr)k,若(αβ)∈ $\mathscr{K}$且(ααβ)∈ $\mathscr{K}$,则|im(α)|=|im(β)|=|im(αβ)|.再由im(αβ)⊆im(β),ker(α)⊆ker(αβ)与[n]的有限性知,im(αβ)=im(β),ker(α)=ker(αβ),即(αββ)∈ $\mathscr{L}$,(ααβ)∈ $\mathscr{R}$.

    由引理3可知,$\mathscr{OI}$(nr)k的任意一个生成集都必须覆盖$\mathscr{K}$r中每个$\mathscr{L}$-类和$\mathscr{R}$-类.由组合知识可知,$\mathscr{K}$r中共有Cnr$\mathscr{L}$-类和Cnr$\mathscr{R}$-类.因此,得到如下推论1:

    推论1  设自然数n≥3,则rank($\mathscr{OI}$(nr)k)≥Cnr.

    引理4  设自然数n≥3,则rank($\mathscr{OI}$(n,0)k)=1,rank($\mathscr{OI}$(n,1)k)=Cn1=n.

      由引理1的证明过程易知$\mathscr{OI}$(n,0)k= $\mathscr{J}$0={Ø},显然有rank($\mathscr{OI}$(n,0)k)=1.下证rank($\mathscr{OI}$(n,1)k)=Cn1=n.

    情形1  当k=1时,首先验证${\beta _1} = \left({\begin{array}{*{20}{l}} 1\\ 1 \end{array}} \right), {\alpha _1} = \left({\begin{array}{*{20}{l}} 2\\ 3 \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{l}} 3\\ 4 \end{array}} \right)$,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} i\\ {i + 1} \end{array}} \right), {\alpha _i} = \left({\begin{array}{*{20}{c}} {i + 1}\\ {i + 2} \end{array}} \right)$${\alpha _{i + 1}} = \left({\begin{array}{*{20}{c}} {i + 2}\\ {i + 3} \end{array}} \right)$,…,${\alpha _{n - 3}} = \left({\begin{array}{*{20}{c}} {n - 2}\\ {n - 1} \end{array}} \right), {\alpha _{n - 2}} = \left({\begin{array}{*{20}{c}} {n - 1}\\ n \end{array}} \right)$${\alpha _{n - 1}} = \left({\begin{array}{*{20}{l}} n\\ 2 \end{array}} \right)$$\mathscr{K}$1,并且这n个元素位于$\mathscr{K}$1中不同的$\mathscr{L}$-类和不同的$\mathscr{R}$-类.令M1={α1α2,…,αi-1αiαi+1,…,αn-1αn},则|M1|=Cn1=n.

    其次,对任意的α$\mathscr{K}$1必存在ij∈{1,2,3,…,n-1,n},使得$\alpha = \left({\begin{array}{*{20}{c}} i\\ j \end{array}} \right)$,则:

    (ⅰ)若i=j=1,则α=β1

    (ⅱ)若i≠1且j≠1,当i < j时,有α=αiαi+1αj-1

    (ⅲ)当i=j时,有α=αiαi+1αn-2αn-1α1α2αi-2αi-1

    (ⅳ)当i>j时,有α=αiαi+1αn-2αn-1α1α2αj-2αj-1.

    由此可见$\mathscr{K}$1⊆〈M1〉.结合定理1知$\mathscr{OI}$(n,1)k=〈M1〉.

    情形2  当k=n-1时,验证${\alpha _1} = \left({\begin{array}{*{20}{l}} 1\\ 2 \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{l}} 2\\ 3 \end{array}} \right), {\alpha _3} = \left({\begin{array}{*{20}{l}} 3\\ 4 \end{array}} \right)$,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} {i - 1}\\ i \end{array}} \right), {\alpha _i} = \left({\begin{array}{*{20}{c}} i\\ 1 \end{array}} \right)$${\alpha _{i + 1}} = \left({\begin{array}{*{20}{l}} {i + 1}\\ {i + 2} \end{array}} \right)$,…${\alpha _{n - 2}} = \left({\begin{array}{*{20}{c}} {n - 2}\\ {n - 1} \end{array}} \right), {\alpha _{n - 1}} = \left({\begin{array}{*{20}{c}} {n - 1}\\ 1 \end{array}} \right)$${\beta _1} = \left({\begin{array}{*{20}{l}} n\\ n \end{array}} \right)$$\mathscr{K}$1,并且这n个元素位于$\mathscr{K}$1中不同的$\mathscr{L}$-类和不同的$\mathscr{R}$-类.令M2={α1α2,…,αi-1αiαi+1,…,αn-1αn},则|M2|=Cn1=n.

    类似情形1可证$\mathscr{K}$1⊆〈M2〉,$\mathscr{OI}$(n,1)k=〈M2〉.

    情形3  当k=i,2≤i < n-1时,验证${\alpha _1} = \left({\begin{array}{*{20}{l}} 1\\ 2 \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{l}} 2\\ 3 \end{array}} \right), {\alpha _3} = \left({\begin{array}{*{20}{l}} 3\\ 4 \end{array}} \right)$,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} {i - 1}\\ i \end{array}} \right)$${\alpha _i} = \left({\begin{array}{*{20}{l}} i\\ 1 \end{array}} \right)$${\alpha _{i + 1}} = \left({\begin{array}{*{20}{l}} {i + 1}\\ {i + 2} \end{array}} \right)$,…${\alpha _{n - 2}} = \left({\begin{array}{*{20}{c}} {n - 2}\\ {n - 1} \end{array}} \right), {\alpha _{n - 1}} = \left({\begin{array}{*{20}{c}} {n - 1}\\ n \end{array}} \right)$${\alpha _n} = \left({\begin{array}{*{20}{c}} n\\ {i + 1} \end{array}} \right)$$\mathscr{K}$1,并且这n个元素位于$\mathscr{K}$1中不同的$\mathscr{L}$-类和不同的$\mathscr{R}$-类.令M3={α1α2,…,αi-1αiαi+1,…,αn-1αn},则|M3|=Cn1=n.

    类似情形1可证$\mathscr{K}$1⊆〈M3〉,$\mathscr{OI}$(n,1)k=〈M3〉.

    综上所述,注意到|M1|=|M2|=|M3|=Cn1=n.进一步得到rank($\mathscr{OI}$(n,1)k)≤Cn1=n.再结合推论1立即有rank($\mathscr{OI}$(n,1)k)=Cn1=n.

    引理5  设n≥3,2≤rn-1,则在$\mathscr{K}$r中存在基数为Cnr的集合M,使得$\mathscr{K}$r⊆〈M〉.

      首先,构造$\mathscr{K}$r中基数为Cnr的集合M.

    对任意的DXn(r)={D1D2,…,Dt}(t=Cnr),不妨设[D]={D=A1A2,…,Am-1Am},其中m < t=Cnr.

    m=1,只有${\alpha _1} = \left({\begin{array}{*{20}{l}} D\\ D \end{array}} \right) = {\varepsilon _D}$$\mathscr{K}$r

    若2 < mt=Cnr,容易验证:${\alpha _1} = \left({\begin{array}{*{20}{c}} {{A_1}}\\ {{A_2}} \end{array}} \right), {\alpha _2} = \left({\begin{array}{*{20}{c}} {{A_2}}\\ {{A_3}} \end{array}} \right), {\alpha _3} = \left({\begin{array}{*{20}{c}} {{A_3}}\\ {{A_4}} \end{array}} \right)$,…,${\alpha _{i - 1}} = \left({\begin{array}{*{20}{c}} {{A_{i - 1}}}\\ {{A_i}} \end{array}} \right), {\alpha _i} = \left({\begin{array}{*{20}{c}} {{A_i}}\\ {{A_{i + 1}}} \end{array}} \right)$${\alpha _{i + 1}} = \left({\begin{array}{*{20}{c}} {{A_{i + 1}}}\\ {{A_{i + 2}}} \end{array}} \right)$,…,${\alpha _{m - 2}} = \left({\begin{array}{*{20}{c}} {{A_{m - 2}}}\\ {{A_{m - 1}}} \end{array}} \right), {\alpha _{m - 1}} = \left({\begin{array}{*{20}{c}} {{A_{m - 1}}}\\ {{A_m}} \end{array}} \right)$${\alpha _m} = \left({\begin{array}{*{20}{l}} {{A_m}}\\ {{A_1}} \end{array}} \right)$$\mathscr{K}$r.

    对其余的$\mathscr{D}$-类也用类似的方式进行构造,可以得到集合M={α1α2,…,αm-1αmαm+1,…,αt-1αt}(t=Cnr),并且这t个元素位于$\mathscr{K}$r中不同的$\mathscr{L}$-类和不同的$\mathscr{R}$-类.

    其次,对任意的α$\mathscr{K}$r,验证α∈〈M〉,即$\mathscr{K}$r⊆〈M〉.

    对任意的α$\mathscr{K}$r,必存在DXn(r),使得im(α),dom(α)∈[D].不失一般性可设$\alpha = \left({\begin{array}{*{20}{l}} {{A_i}}\\ {{A_j}} \end{array}} \right)$,其中AiAj∈[D]={D=A1A2,…,Am-1Am}且ij∈{1,2,…,m-1,m}.

    若|[D]|=1,则

    α=εD=εim(α)

    若|[D]|≥2,则:

    i < j时,有α=αiαi+1αj-1

    i=j时,有α=αiαi+1αm-1αmα1α2αi-2αi-1

    i>j时,有α=αiαi+1αm-1αmα1α2αj-2αj-1.

    定理2的证明  由引理4与引理5可知,任意的α$\mathscr{K}$r可以表达为M中若干元素的乘积或αM,即$\mathscr{K}$r⊆〈M〉.再由定理1知,M$\mathscr{OI}$(nr)k的生成集,即$\mathscr{OI}$(nr)k=〈M〉,其中M的定义见引理4与引理5的证明过程.注意到|M|=Cnr,进一步有rank($\mathscr{OI}$(nr)k)≤Cnr.因此,结合推论1与引理4,立即有

    定理3的证明  当l=r时,显然有r($\mathscr{OI}$(nr)k$\mathscr{OI}$(nl)k)=0.

    当0≤l < r时,由定理1与定理2的证明过程可知

    再由相关秩的定义,可知r($\mathscr{OI}$(nr)k$\mathscr{OI}$(n,1)k)=Cnr.即证得

    注1  半群$\mathscr{OI}$(nn)k=$\mathscr{OI}$(nn-1)k∪{ε[n]}不是由顶端$\mathscr{K}$-类$\mathscr{K}$n生成的,且rank($\mathscr{OI}$(nn)k)=n+1.

Reference (13)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return