Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 8
Article Contents

Yang-yang ZHAO, Ze-jian CUI. On Existence of Global Solutions and Blow-up of a Nonlocal Reaction-Diffusion Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 34-38. doi: 10.13718/j.cnki.xsxb.2019.08.007
Citation: Yang-yang ZHAO, Ze-jian CUI. On Existence of Global Solutions and Blow-up of a Nonlocal Reaction-Diffusion Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 34-38. doi: 10.13718/j.cnki.xsxb.2019.08.007

On Existence of Global Solutions and Blow-up of a Nonlocal Reaction-Diffusion Equation

More Information
  • Corresponding author: Ze-jian CUI
  • Received Date: 11/04/2019
    Available Online: 20/08/2019
  • MSC: O175.29

  • In this paper, an initial-boundary value problem has been investigated for a quasilinear reaction-diffusion equation with weighted nonlocal inner absorption and nonlinear Neumann boundary condition. We establish, respectively, first, sufficient conditions for the existence of global solutions are obtained, and second, the blow-up in finite time is studied and the upper and lower bounds of the blow-up time t* are obtained.
  • 加载中
  • [1] STRAUGHAN B.Explosive Instabilities in Mechanics[M]. Berlin:Springer, 1998.

    Google Scholar

    [2] QUITTNER R, SOUPLET P.Superlinear Parabolic Problems:Blow-up, Global Existence and Steady States[M].Basel:Birkhauser, 2007.

    Google Scholar

    [3] HU B. Blow-up Theories for Semilinear Parabolic Equations[M]. Berlin:Springer, 2011.

    Google Scholar

    [4] 刘芮琪, 吴行平, 唐春雷.高维空间中一类奇异Kirchhoff型问题正解的存在性[J].西南大学学报(自然科学版), 2016, 38(4):67-71.

    Google Scholar

    [5] DENG K, LEVINE H A. The Role of Critical Exponents in Blow-up Theorems:The Sequel[J].JMath Anal Appl, 2000, 243:85-126. doi: 10.1006/jmaa.1999.6663

    CrossRef Google Scholar

    [6] 李红英.一类非局部问题的多解性[J].西南师范大学学报(自然科学版), 2017, 42(6):24-27.

    Google Scholar

    [7] 唐之韵, 欧增奇.一类非局部问题解的存在性与多重性[J].西南大学学报(自然科学版), 2018, 40(4):48-52.

    Google Scholar

    [8] BAO A G, SONG X F. Bounds for the Blow-up Time of the Solutions to Quasi-Linear Parabolic Problems[J].ZAngewMath Phys, 2014, 65:115-123.

    Google Scholar

    [9] TANG G S, LI Y F, YANG X T. Lower Bounds for the Blow-up Time of the Nonlinear Non-local Reaction Diffusion Problems in ${\mathbb{R}^N}$(N≥ 3)[J].BoundValueProbl, 2014, 265:1-5.

    ${\mathbb{R}^N}$(N≥ 3)" target="_blank">Google Scholar

    [10] MA L W, FANG Z B.Blow-up Analysis for a Reaction-Diffusion Equation with Weighted Nonlocal Inner Absorptions Under Nonlinear Boundary Flux[J]. Nonlinear Anal, 2016, 32:338-354. doi: 10.1016/j.nonrwa.2016.05.005

    CrossRef Google Scholar

    [11] DING J T, SHEN X H.Blow-up Analysis in Quasilinear Reaction-Diffusion Problems with Weighted Nonlocal Source[J]. Comput Math Anal, 2018, 75:1288-1301.

    Google Scholar

    [12] BREZIS H.Functional Analysis, Sobolev Spaces and Partial Differential Equations[M].New York:Springer-Verlag, 2011.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1141) PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

On Existence of Global Solutions and Blow-up of a Nonlocal Reaction-Diffusion Equation

    Corresponding author: Ze-jian CUI

Abstract: In this paper, an initial-boundary value problem has been investigated for a quasilinear reaction-diffusion equation with weighted nonlocal inner absorption and nonlinear Neumann boundary condition. We establish, respectively, first, sufficient conditions for the existence of global solutions are obtained, and second, the blow-up in finite time is studied and the upper and lower bounds of the blow-up time t* are obtained.

  • 本文考虑如下具有Neumann边界条件和带有非局部源的非线性抛物方程的初边值问题:

    其中$\varOmega \subset {\mathbb{R}^n}\left( {n \ge 2} \right)$是非空具有光滑边界∂Ω的有界区域, υ是相对于∂Ω的向外法向量.若爆破发生, 用t*表示爆破时间; 若不爆破, 则用t*=∞表示.在整篇文章中, g是属于${C^2}\left( {\overline {{\mathbb{R}_ + }} } \right)$的函数, 且满足当s>0时, g′(s)>0;ρ是属于${C^2}\left( {\overline {{\mathbb{R}_ + }} } \right)$的函数; b是属于$C\left( {\bar \varOmega } \right)$的函数; fh都是属于${C^1}\left( {{\mathbb{R}_ + }} \right)$的非负函数, u0是正函数且满足兼容条件.其中函数ρ可符合不同的数学模型, 例如:在流体动力学中, 描述地下水运动的模型方程(多孔介质方程)中则退化为ρ(u)=0;在核反应堆的热传导方程中ρ(u)>0, 且ρ(u)没有上界.

    近年来, 关于扩散方程的研究可以参考文献[1-5].在很多情况下, 这些方法用于研究局部源的反应扩散问题.从某种意义上说, 非局部模型比局部模型更接近实际问题, 但现在许多局部理论已不再成立, 为此我们通过一定改进的微分不等式, 对反应扩散方程的非局部问题进行研究[6-11].

    受以上工作的启发, 本文研究方程(1)的整体解的存在性和爆破现象.利用适当的微分不等式技巧, 分别建立了在有限时间内存在整体解或者爆破的条件.若爆破发生, 我们推导出爆破时间的上界和下界估计.

    为了得到方程解的整体存在性, 假设函数ρ, f, g, hb满足如下条件

    其中b1>0, a1≥0, q>1, p>2q-1, l+1>0.最后, 构造如下辅助函数:

    定理1  u是方程(1)的非负古典解且条件(2)成立, 则u在度量Φ(t)意义下整体存在.

      由散度定理和条件(2), 可以得到

    其中ρ0=minx∂Ω(x·υ), ${d_0} = {\max _{x \in \bar \varOmega }}\left| x \right|$.现在对不等式(5)的右边使用Young不等式, 得到

    其中θ1为待定的正数.将(5)-(7)式代入(4)式中, 取${\theta _1} = \frac{{2{c_1}l}}{{{a_1}}}$, 结合Hölder不等式和Young不等式可以分别推出

    其中$\alpha = \frac{{p-2q-1}}{{p-1}} \in \left( {0, 1} \right)$, 且常数κ满足

    由Hölder不等式得

    将(9)式代入(8)式, 可以得到

    其中

    将(10)式代入(11)式, (2)式代入(3)式, 分别得到

    将(13)式代入(12)式, 推导出

    ${K_3} = {K_1}{\left| \varOmega \right|^{1-\frac{{l + 1}}{{p + l}}}} > 0$, ${K_4} = {K_2}{\left| \Omega \right|^{\frac{{-{{\left( {p-1} \right)}^2}}}{{\left( {l + 1} \right)\left( {p + l} \right)}}}} > 0$.由于p>1, 则有$\frac{{p-1}}{{l + 1}} > 0$成立.定理1证明完毕.

    现在, 构造以下辅助函数:

    定理2  假设u为方程(1)的非负古典解.函数ρ, f, h, gb满足

    a为非负数.且假设初始值Ψ(0)>0.则方程(1)的解u(x, t)在度量Φ(t)的意义下必在有限时间t*爆破, 且t*T, 其中:当a>0时, $T = \frac{{\varPhi \left( o \right)}}{{2a\left( {1 + a} \right)\varPhi \left( 0 \right)}}$; 当a=0时, T=∞.

      利用条件(16)和(17), 以及散度定理和格林公式, 分别得到

    因为Ψ(0)>0, 由此对t∈(0, t*), 都有Ψ(t)>0.再利用Hölder不等式和(16)式可分别推出

    将(21)式代入(20)式可得

    将不等式(22)两边同时关于时间, 从0到t进行积分, 并且由(18)式可知

    a>0时, 对(23)式第二个不等式在[o, t]上进行积分, 得到Φ-a(t)≤-2a(1+a)Ψ(0)Φ-(1+a)(0)t+Φ-a, 则Φ(t)必在有限时刻t*T处爆破, 即当$t \to T = \frac{{\varPhi \left( 0 \right)}}{{2a\left( {1 + a} \right)\varPsi \left( 0 \right)}}$时, Φ(t)→∞.因此:当a>0时, ${t^*} \le T = \frac{{\varPhi \left( 0 \right)}}{{2a\left( {1 + a} \right)\varPsi \left( 0 \right)}}$; 当a=0时, 从(23)式可知Φ(t)≥Φ(0)e2Φ-1(0)Ψ(0)t, 对所有t>0成立, 即T=∞.

    定理3  假定$\varOmega \subset {\mathbb{R}^n}\left( {n \ge 3} \right)$是非空且具有光滑边界的有界区域. u为方程(1)的非负古典解, 而且在t*处爆破, 函数ρh满足条件(2), 函数fb满足

    其中b1>0, a1≥0, q>1, l+1>0, m>0. l满足1 < m(l+1)+p≤2q-1, l+1>4(N-2)(q-1).则有${t^*} \ge T = \int_{\varPhi \left( 0 \right)}^\infty {\frac{{{\rm{d}}\tau }}{{{k_1}\tau + {k_2} + {k_3}{\tau ^{\frac{{3\left( {N-2} \right)}}{{3N-8}}}}}}} $.

      首先, 对函数Φ(t)进行求导.利用格林公式, 并由(6), (7), (10)和(24)式, 可以推出

    其中β1是待定常数.结合Hölder不等式和Young不等式, 可以得到

    其中

    λ1, λ2∈(0, 1).对(26)式利用Schwarz不等式

    N≥3时, 由文献[12]中的Sobolev不等式, 利用Young不等式得到

    其中:当N=3时, ${C_b} = {2^{\frac{1}{2}}}\left( {C_s^{\frac{3}{2}}} \right)$; 当N>3时, ${C_b} = \left( {c_s^{\frac{N}{{2\left( {N-2} \right)}}}} \right)$. β2>0是待定常数.由Young不等式得

    其中

    λ3+λ4=1, β3>0为待定常数.把(26), (28)式和(29)式代入到(25)式中, 得到

    其中

    由(3)式和(24)式, 可得

    取定β1, 使其满足$0 < {\beta _1} < \frac{{2{c_1}l}}{{{a_1}}}$, 然后再取${\beta _2} = \frac{{8\left( {2{c_1}l-{a_1}{\beta _1}} \right)\left( {N-2} \right)}}{{{\omega _6}N\left( {l + 1} \right)}}$, 使得ω4=0, 同时取${\beta _3} = \frac{{\left( {l + 1} \right){b_1}{{\left| \varOmega \right|}^{\frac{{l-p}}{{l + 1}}}}}}{{{\lambda _2}{C_b}{\lambda _4}{\omega _6}}}$, 使得ω5=0.将(31)式代入(30)式可得

    如果$\mathop {\lim }\limits_{t \to {t^*}} \varPhi \left( t \right) = \infty $, 对此式子两边关于时间t在[0, t*]上进行积分, 可化简为

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return