-
微分方程的周期边值问题在物理、天文、经济及生物等诸多领域内有着极为广泛的运用,例如天文学中的行星转动周期问题,生物学中的生物总数变化的问题,经济学中的产品推广模型问题等.基于其丰富的实际运用背景,对于二阶非线性微分方程周期边值问题正解的存在性研究显得极为重要.其中关于单个方程的周期边值问题正解的存在性研究已经有了一些结论[1-7].
文献[5]运用锥拉伸与压缩不动点定理在f0=f∞=∞的情形下获得了周期边值问题
正解的存在性.其中ρ>0是常数,λ是正参数. f:[0,∞)→[0,∞)连续并且当y>0时有f(y)>0;g:[0,2π)→[0,∞)连续并且
$ \int_{0}^{2 \pi} g(t) \mathrm{d} t>0$ .注意到,文献[5]得到的结果要求权函数g(t)非负,而当权函数变号时,文献[5]中的条件和方法不再适用.因此,文献[6]研究了带有可变号权函数的周期边值问题其中
$q \in C((-\infty, +\infty), [0, \infty)) $ 的周期为2π,且$q(t) \not \equiv 0, a \in C(( - \infty , + \infty ), ( - \infty , + \infty )) $ 的周期为2π并且是可变号的,λ∈(-∞,+∞)是一个参数.在得到带变号权函数的线性问题的谱后,文献[6]运用分歧理论得到了问题(1)正解的存在性.相较于单个方程的周期边值问题,关于系统周期边值问题正解的存在性研究相对较少[8-12].文献[10]研究了系统周期边值问题
正解的存在性,通过运用Krasnoselskii不动点定理,得到了在H(t)恒正时问题(2)正解的存在性结果.
注意到,问题(2)的方程中参数恒为1,并且权H(t)是恒正的.那么一个自然的问题是,当含参系统周期边值问题的权允许变号时,其正解的存在性结果如何?据我们所知,权函数变号的含参二阶系统周期边值问题的正解的存在性还没有被讨论过.这是由于过往运用的Krasnoselskii不动点定理需要构造正锥,而允许权函数变号时,构造正锥是十分困难的,因此无法轻易得到权函数变号情况下的系统周期边值问题正解的存在性结果.基于此,本文将基于Leray-Schauder不动点定理研究如下权函数变号的含参二阶系统周期边值问题
其中λ>0是一个参数,权函数
$a, b \in C([0, 1], \mathbb{R}) $ 允许变号,$q_{1}, q_{2} \in C([0, 1], [0, \infty)) $ 且$q_{i} \not \equiv 0(i=1, 2) $ .本文将证明参数λ充分小时具有变号权函数的问题(3)正解的存在性.我们记G1(x,y)为问题
的Green函数;G2(x,y)为问题
的Green函数.令
本文的主要结果为:
定理1 假设如下条件成立:
(H1)
$f, g \in C([0, \infty) \times[0, \infty), [0, \infty)), f(0, 0)>0, g(0, 0)>0 $ ;(H2) 存在μ1>0,使得
(H3) 存在μ2>0,使得
则存在λ*>0,使得当0 < λ < λ*时,问题(3)存在正解(u,v).
易见,
$ (u, v) \in C^{2}[0, 1] \times C^{2}[0, 1]$ 是问题(3)的解当且仅当$ (u, v) \in C[0, 1] \times C[0, 1]$ 是等价的积分方程的解.
定义Banach空间
$E=C[0, 1] \times C[0, 1] $ ,其上的范数为$\|(u, v)\|=\|u\|+\|v\| $ ,这里$ \parallel u\parallel {\rm{ = }}\mathop {\max }\limits_{0 \le x \le 1} |u(x)|, \parallel v\parallel = \mathop {\max }\limits_{0 \le x \le 1} |v(x)|$ .定义算子
$F : E \longrightarrow E $ 为其中
显然算子F是全连续算子,并且F在E中的不动点(u,v)对应着问题(3)在
$C^{2}[0, 1] \times C^{2}[0, 1] $ 中的解(u,v).引理1[13](Leray-Schauder不动点定理) 设
$A : E \longrightarrow E $ 是全连续算子.如果集$ \{ x|x \in E, x = \lambda Ax, 0 < \lambda < 1\} $ 是有界的,则A在E中的闭球T中必有不动点,其中引理2 假设条件(H1)成立.令0 < δ < 1.那么存在正数
${\bar \lambda } $ ,使得对于任意的0 < λ <${\bar \lambda } $ ,问题有正解
$\left(\tilde{u}_{\lambda}, \tilde{v}_{\lambda}\right) $ ,满足当$ \lambda \rightarrow 0$ 时,$ \left\|\left(\tilde{u}_{\lambda}, \tilde{v}_{\lambda}\right)\right\| \rightarrow 0$ ,并且其中
$ p_{1}(x)=\int_{0}^{1} G_{1}(x, y) a^{+}(y) \mathrm{d} y, p_{2}(x)=\int_{0}^{1} G_{2}(x, y) b^{+}(y) \mathrm{d} y$ .证 对任意(u,v)∈E,令
则
$F_{1} : E \longrightarrow E $ 是全连续算子,且F1的不动点对应着问题(4)的解.下边运用Leray-Schauder不动点定理证明当λ充分小时,F1存在一个不动点.由条件(H1),可取ε>0,使得对任意的0≤x,y≤ε,有
令
$ \left\| {{p_1}} \right\| = \mathop {\max }\limits_{0 < x < 1} \left| {{p_1}(x)} \right|,\left\| {{p_2}} \right\| = \mathop {\max }\limits_{0 < x < 1} {\rm{ }}\left| {{p_2}(x)} \right|$ .记$ \|p\|=\max \left\{\left\|p_{1}\right\|, \left\|p_{2}\right\|\right\}$ .假设其中
$\tilde{f}(t, t)=\mathop {\max }\limits_{0 \le x,y \le t} f(x, y), \widetilde{g}(t, t)=\max _{0 \leqslant x, y \leqslant t} g(x, y) $ .则存在M∈(0,ε),使得据引理1,设u,v∈C[0, 1]和θ∈(0,1),使得(u,v)=θF1(u,v),则
同理
由(8),(9)式可得
进一步得到
由(11)式可得
由(7),(12)式可得
$\|(u, v)\| \neq M $ .注意到$\lambda \rightarrow 0 $ 时$M \rightarrow 0 $ .根据引理1,算子F1存在不动点$ \left(\tilde{u}_{\lambda}, \tilde{v}_{\lambda}\right)$ ,满足$ \left\|\left(\tilde{u}_{\lambda}, \tilde{v}_{\lambda}\right)\right\| \leqslant M <\varepsilon$ .进一步,由(5)式得,对任意的x∈(0,1),有
$ \tilde{u}_{\lambda}(x) \geqslant \lambda \delta f(0, 0) p_{1}(x)$ .由(6)式得,对任意的x∈(0,1),有$ \tilde{v}_{\lambda}(x) \geqslant \lambda \delta g(0, 0) p_{2}(x)$ .定理1的证明
记
$ r_{1}(x)=\int_{0}^{1} G_{1}(x, y) a^{-}(y) \mathrm{d} y$ ,取h∈(1,1+μ1),由条件(H1)和(H2)可得,存在正数α1∈(0,1),使得对任意的m,n∈[0,α1],x∈(0,1),有$ f(m, n) \leqslant h f(0, 0), \left(1+\mu_{1}\right) r_{1}(x) \leqslant p_{1}(x)$ .则进一步可得
$r_{1}(x) f(m, n) \leqslant \frac{h}{1+\mu_{1}} f(0, 0) p_{1}(x) $ .取$ \gamma_{1}=\frac{h}{1+\mu_{1}}$ ,即同理,记
$ r_{2}(x)=\int_{0}^{1} G_{2}(x, y) b^{-}(y) \mathrm{d} y$ ,由条件(H1)和(H3)可得,存在正数α2,γ2∈(0,1),使得对任意的m,n∈[0,α2],x∈(0,1),有记
$ \|p\|=\max \left\{\left\|p_{1}\right\|, \left\|p_{2}\right\|\right\}$ ,其中‖p1‖,‖p2‖如引理2中所给.$ \gamma = \max \left\{ {{\gamma _1}, {\gamma _2}} \right\}, \alpha = \max \left\{ {{\alpha _1}} \right., {\alpha _2}\} $ ,固定δ∈(γ,1),令λ*>0为满足如下条件的常数:(a) 对于任意的λ < λ*,有
其中
$\tilde{u}_{\lambda}, \widetilde{v}_{\lambda} $ 如引理2中所给;(b) 对任意的
$m_{i}+n_{i} \in[-2 \alpha, 2 \alpha](i=1, 2) $ ,且$ \left|m_{1}-m_{2}\right|+\left|n_{1}-n_{2}\right| \leqslant \lambda^{*} \delta f(0, 0)\|p\|+$ $ \lambda^{*} \delta g(0, 0)\|p\|$ ,有对于λ < λ*,我们欲寻求问题(3)形如
$\left(u_{\lambda}, v_{\lambda}\right)=\left(\tilde{u}_{\lambda}+\overline{u}_{\lambda}, \tilde{v}_{\lambda}+\overline{v}_{\lambda}\right) $ 的解,则$\left(\overline{u}_{\lambda}, \overline{v}_{\lambda}\right) $ 需满足对于任意的
$ w_{1}, w_{2} \in C[0, 1]$ ,令$(u, v)=\left(A_{2}\left(w_{1}, w_{2}\right), B_{2}\left(w_{1}, w_{2}\right)\right) $ 是问题的解,那么
$A_{2} : C[0, 1] \times C[0, 1] \longrightarrow C[0, 1] $ 和$ B_{2} : C[0, 1] \times C[0, 1] \longrightarrow C[0, 1]$ 是全连续算子.记
$ F_{2}(u, v)(x)=\left(A_{2}(u, v)(x), B_{2}(u, v)(x)\right)$ ,那么$ F_{2} : E \longrightarrow E$ 是全连续算子.由引理1,设$u, v \in C[0, 1] $ 及θ∈(0,1),使得$ (u, v)=\theta F_{2}(u, v)$ ,则有断言
事实上,由(15),(16)式可得
由(17)式可得
联立(13),(17)式,可得
进一步
同理
因此
$ \|v(x)\| <\lambda \delta\|p\| g(0, 0)$ ,则由引理1可得F2存在不动点
$\left(\overline{u}_{\lambda}, \overline{v}_{\lambda}\right) $ 满足$\left\|\left(\overline{u}_{\lambda}, \overline{v}_{\lambda}\right)\right\| \leqslant \lambda \delta\|p\| f(0, 0)+\lambda \delta\|p\| g(0, 0) $ .联系引理2,我们得到问题(3)的解$\left(u_{\lambda}, v_{\lambda}\right)=\left(\tilde{u}_{\lambda}+\overline{u}_{\lambda}, \tilde{v}_{\lambda}+\overline{v}_{\lambda}\right) $ .特别地,
则(uλ,vλ)是问题(3)的正解.
Existence of Positive Solutions for Periodic Boundary Value Problems of Second-Order Systems with Sign-Changing Weight
- Received Date: 26/11/2018
- Available Online: 20/08/2019
-
Key words:
- second-order systrms /
- periodic boundary value problem /
- sign-changing weight /
- positive solution /
- Leray-Schauder fixed point theorem
Abstract: In this paper, the existence of positive solutions for periodic boundary value problems has been studied for the following second-order systems with sign-changing weight $ \left\{ \begin{array}{l} - {u^{\prime \prime }} + {q_1}(x)u = \lambda a(x)f(u,v)\;\;0 \lt x \lt 1\\ - {v^{\prime \prime }} + {q_2}(x)v = \lambda b(x)g(u,v)\;\;0 \lt x \lt 1\\ u(0) = u(1),{u^\prime }(0) = {u^\prime }(1)\\ v(0) = v(1),{v^\prime }(0) = {v^\prime }(1) \end{array} \right. $ where \lt i \gt q \lt /i \gt \lt sub \gt \lt i \gt i \lt /i \gt \lt /sub \gt ∈ \lt i \gt C \lt /i \gt ([0, 1], [0, ∞)) and \lt inline-formula \gt $q_{i} \not \equiv 0(i=1, 2) $ \lt /inline-formula \gt , \lt inline-formula \gt $ a, b \in C([0, 1], \mathbb{R})$ \lt /inline-formula \gt may change the sign, \lt inline-formula \gt $f, g \in C([0, \infty) \times[0, \infty), [0, \infty)), \lambda \gt 0 $ \lt /inline-formula \gt is a parameter. The main results of this paper are based on Leray-Schauder fixed point theorem.
DownLoad: