Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 8
Article Contents

Hua ZHONG, Wu-sheng WANG. Estimation of Unknown Functions in a Class of Nonlinear Weakly Singular Integral Inequalities[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 45-50. doi: 10.13718/j.cnki.xsxb.2019.08.009
Citation: Hua ZHONG, Wu-sheng WANG. Estimation of Unknown Functions in a Class of Nonlinear Weakly Singular Integral Inequalities[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 45-50. doi: 10.13718/j.cnki.xsxb.2019.08.009

Estimation of Unknown Functions in a Class of Nonlinear Weakly Singular Integral Inequalities

More Information
  • Corresponding author: Wu-sheng WANG
  • Received Date: 03/09/2018
    Available Online: 20/08/2019
  • MSC: O178

  • A class of two-dimensional weakly singular nonlinear integral inequalities have been studied, which include non-constant function factors outside the integral terms, and can not be estimated by Gronwall-Bellman type integral inequalities in vector form. With Hölder integral inequality, Gamma function and Beta function, the weak singular nonlinear integral problem is transformed into no singular nonlinear integral problem; and with Bernoulli inequality, the nonlinear problem is transformed into a linear problem; and with the variable substitution technique and the magnification technique, the integral inequality with only one unknown function is studied, and thenthe estimations of the two unknown functions in the inequality group are given. This result can be used to study the properties of the solutions of the integral and differential dynamical systems.
  • 加载中
  • [1] GRONWALL T H.Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations[J]. Ann Math, 1919, 20(4):292-296.

    Google Scholar

    [2] BELLMAN R. The Stability of Solutions of Linear Differential Equations[J]. Duke Math J, 1943, 10(4):643-647. doi: 10.1215/S0012-7094-43-01059-2

    CrossRef Google Scholar

    [3] AGARWAL R P, DENGS F, ZHANGW N.Generalization of a Retarded Gronwall-Like Inequality and its Applications[J]. Appl Math Comput, 2005, 165(3):599-612.

    Google Scholar

    [4] 卢钰松, 王五生.一类含有p次幂的Volterra-Fredholm型非线性迭代积分不等式[J].西南大学学报(自然科学版), 2015, 37(8):76-80.

    Google Scholar

    [5] 侯宗毅, 王五生.一类变下限非线性Volterra-Fredholm型积分不等式及其应用[J].西南师范大学学报(自然科学版), 2016, 41(2):21-25.

    Google Scholar

    [6] 梁英.一类时滞弱奇异Wendroff型积分不等式[J].四川师范大学学报(自然科学版), 2014, 37(4):493-496. doi: 10.3969/j.issn.1001-8395.2014.04.009

    CrossRef Google Scholar

    [7] 欧阳云, 王五生.一类非线性弱奇异三重积分不等式中未知函数的估计及其应用[J].西南大学学报(自然科学版), 2017, 39(3):69-74.

    Google Scholar

    [8] 周俊.关于一个积分不等式组的讨论[J].四川大学学报(自然科学版), 2009, 46(1):21-25. doi: 10.3969/j.issn.0490-6756.2009.01.005

    CrossRef Google Scholar

    [9] MA Q H, PEČARIĆ J. Some New Explicit Bounds for Weakly Singular Integral Inequalities with Applications to Fractional Differential and Integral Equations[J]. Journal of Mathematical Analysis and Applications, 2008, 341(2):894-905. doi: 10.1016/j.jmaa.2007.10.036

    CrossRef Google Scholar

    [10] XU R, MENG F W. Some New Weakly Singular Integral Inequalities and Their Applications to Fractional Differential Equations[J]. Journal of Inequalities andApplications, 2016, 2016:78. doi: 10.1186/s13660-016-1015-2

    CrossRef Google Scholar

    [11] 马庆华, 杨恩浩.弱奇性Volterra积分不等式解的估计[J].应用数学学报, 2002, 25(3):505-515. doi: 10.3321/j.issn:0254-3079.2002.03.015

    CrossRef Google Scholar

    [12] LUO R C, WANG W S, HOU Z Y.Explicit Bounds of Unknown Function of Some New Weakly Singular Retarded Integralinequalities with Applications[J]. Journal of Mathematical Inequalities, 2018, 12(1):235-250.

    Google Scholar

    [13] MEDVEĎ M.A New Approach to an Analysis of Henry Type Integral Inequalities and Their Bihari Type Versions[J]. Journal of Mathematical Analysis and Applications, 1997, 214(2):349-366. doi: 10.1006/jmaa.1997.5532

    CrossRef Google Scholar

    [14] 张伟年, 杜正东, 徐冰.常微分方程[M].北京:高等教育出版社, 2014:136-137.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(865) PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Estimation of Unknown Functions in a Class of Nonlinear Weakly Singular Integral Inequalities

    Corresponding author: Wu-sheng WANG

Abstract: A class of two-dimensional weakly singular nonlinear integral inequalities have been studied, which include non-constant function factors outside the integral terms, and can not be estimated by Gronwall-Bellman type integral inequalities in vector form. With Hölder integral inequality, Gamma function and Beta function, the weak singular nonlinear integral problem is transformed into no singular nonlinear integral problem; and with Bernoulli inequality, the nonlinear problem is transformed into a linear problem; and with the variable substitution technique and the magnification technique, the integral inequality with only one unknown function is studied, and thenthe estimations of the two unknown functions in the inequality group are given. This result can be used to study the properties of the solutions of the integral and differential dynamical systems.

  • Gronwall-Bellman型积分不等式[1-2]及其推广形式在研究微分方程、积分方程和微积分方程解的存在性、有界性和唯一性等定性性质时具有重要作用,所以人们不断地研究它的各种推广形式,使其应用范围不断扩大,例如文献[3-7]及其引文.由于分析微分方程组解的需要,人们也研究积分不等式组.文献[8]研究了积分不等式组

    文献[9]研究了弱奇异积分不等式

    文献[10]研究了更一般形式的弱奇异积分不等式

    受文献[8-11]的启发,本文研究了积分号外具有非常数因子,且不等式左边是未知函数幂函数的弱奇异积分不等式组

    不等式组(5)把文献[8]中的不等式(1)和(2)推广成积分号外含有非常数因子的弱奇异积分不等式,把文献[9-10]中的不等式(3)和(4)推广成不等式组.利用Hölder积分不等式、Gamma函数和Beta函数把弱奇异积分问题转化成没有奇异的积分问题,利用Bernoulli不等式把非线性问题转化成线性问题,利用积分不等式的结果给出不等式组(5)中两个未知函数的估计.该结果可用于研究积分、微分方程组解的性质.

1.   主要结果与证明
  • 为了研究不等式组(5),我们需要下面的引理:

    引理1  设$u, A, B, C, f, g \in C\left(\left[0, t_{1}\right], \mathbb{R}_{+}\right) $BC为不减函数,k1k2k3为正常数,且k1>k2k1>k3,它们满足不等式

    则不等式(6)中的未知函数有估计式

    定理1   设ri(i=1,2,3,4,5,6)是正常数,$r_{1}>r_{5}, r_{1}>r_{2}, r_{4}>r_{3}, r_{4}>r_{6} ; u, v, a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, $ $c_{2}, d_{1}, d_{2}, f_{1}, f_{2} $都是区间[0,t1]上满足不等式组(5)的非负连续函数.若[αβγ]∈I,取$ {p_1} = \frac{1}{\beta }, {q_1} = \frac{1}{{1 - \beta }}$;若[αβγ]∈Ⅱ,取$ p_{2}=\frac{1+4 \beta}{1+3 \beta}, q_{2}=\frac{1+4 \beta}{\beta}$,则对i=1,2有不等式组(5)中未知函数的估计式

    其中

      利用文献[12]中的引理1,文献[13]中的定理1,文献[11]中的引理1和引理2,由(5)式推出

    利用著名的Jensen不等式$\left(A_{1}+A_{2}+\cdots+A_{n}\right)^{l} \leqslant n^{l-1}\left(A_{1}^{l}+A_{2}^{l}+\cdots+A_{n}^{l}\right) $,由(23)式和(23)式推出

    把(26)式代入(24)式,得到

    把(27)式代入(26)式,利用Bernoulli不等式知,对任意t∈[0,t1],有

    由文献[14]的定理5.5和(28)式推出,对任意t∈[0,t1],有

    把(29)式代入(27)式,看出对任意t∈[0,t1],有

    其中K1K2如(12)式和(13)式中所定义.把(30)式代入(25)式,利用Bernoulli不等式,得到

    其中A(t),B(t)分别由(10)式和(11)式定义.把引理1应用于不等式(31),推出所要求的估计式(9).把估计式(9)代入不等式(30),得到所要求的估计式(8).

2.   应用
  • 考虑积分方程系统[8, 11]

    为了对xy的模进行估计,令u(t)=‖x(t)‖,v(t)=‖y(t)‖,由(32)式得到

    则(33)式可视为不等式组(5)的特殊情况:$a_{i}(t)=b_{i}(t)=c_{i}(t)=d_{i}(t)=f_{i}(t) \equiv 1(i=1, 2), \alpha=1, \beta= $ $\frac{2}{3}, \gamma=\frac{5}{6}, r_{1}=4, r_{2}=3, r_{3}=2, r_{4}=3, r_{5}=2, r_{6}=1. $根据文献[11]中的定义可以看出,[αβγ]为I型分布.根据文献[11]中的引理1,取$p_{1}=\frac{3}{2}, q_{1}=3 $,这些函数满足定理1中相应函数的条件.对定理1中有关函数计算可得

    由定理1,可以对积分方程组(32)中的未知函数xy的模进行估计,

    其中

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return