Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 9
Article Contents

Yi-xi LONG, Xiao-xia REN, Hao ZHANG. On Thermal Expansion and Elastic Modulus and Effective Charge of ZnS Graphene[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(9): 21-26. doi: 10.13718/j.cnki.xsxb.2019.09.004
Citation: Yi-xi LONG, Xiao-xia REN, Hao ZHANG. On Thermal Expansion and Elastic Modulus and Effective Charge of ZnS Graphene[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(9): 21-26. doi: 10.13718/j.cnki.xsxb.2019.09.004

On Thermal Expansion and Elastic Modulus and Effective Charge of ZnS Graphene

More Information
  • Corresponding author: Xiao-xia REN ; 
  • Received Date: 19/06/2018
    Available Online: 20/09/2019
  • MSC: O482.3

  • Considering the deformation and the anharmonic vibration of the atoms, we have studied the temperature-dependence of the thermal expansion coefficient and the elastic modulus of ZnS graphene, the relationship between the effective charge and the polarity and the deformation by the solid physical method. We have discussed the effects of the deformation and the atomic anharmonic vibration on them. The results show that the thermal expansion coefficient of ZnS graphene is negative, and the value is between1.1781.178×10-3K-1 and 22.323×10-3, which is increasing with temperature. The value of elastic modulus is between 0.241 405-453.253 5 GPa increasing with temperature. In the consideration of the simple harmonic approximation, the thermal expansion coefficient is zero and the elastic modulus are constant. When the anharmonic term is considered, the thermal expansion coefficient and the modulus of elasticity vary with the temperature. The higher the temperature is, the more obvious the anharmonic effect is. Among the deformation shear, the shear deformation and uniaxial deformation, the size deformation has the greatest influence on the positive effective charge, the uniaxial deformation has the greatest influence on the negative effective charge, and the shear deformation has the least influence on the positive and negative effective charge. The influence of size deformation on polarity can reach 70.4%, while the effect of shear deformation is only 46.5%.
  • 加载中
  • [1] 任荣康.ZnS掺杂的第一性原理研究[D].保定: 河北大学, 2017.

    Google Scholar

    [2] 赵伟刚.ZnS的p型掺杂及其光学性质的理论研究[D].兰州: 兰州理工大学, 2017.

    Google Scholar

    [3] 牛毅君.不同元素掺杂ZnS系统的第一性原理研究[D].新乡: 河南师范大学, 2014.

    Google Scholar

    [4] ŞAHIN H, CAHANGIROV S, TOPSAKAL M, et al. Monolayer Honeycomb Structures of Group-Ⅳ Elements and Ⅲ-Ⅴ Binary Compounds:First-Principles Calculations[J].Phys Rev B, 2009, 80(15):155453-1-155453-12. doi: 10.1103/PhysRevB.80.155453

    CrossRef Google Scholar

    [5] TOPSAKAL M, CIRACI S. Elastic and Plastic Deformation of Graphene, Silicene, and Boron Nitride Honeycomb Nanoribbons Under Uniaxial Tension:A First-Principles Density-Functional Theory Study[J]. PhysRev B, 2010, 81(2):024107-1-024107-6.

    Google Scholar

    [6] ZHUANG H L, SINGH A K, HENNING R G.Computational Discovery of Single-Layer Ⅲ-Ⅴ Materials[J]. PhysRev B, 2013, 87(16):165415-1-165415-8.

    Google Scholar

    [7] SINGH A K, ZHUANG H L, HENNING R G.Ab Initio Synthesis of Single-Layer Ⅲ-Ⅴ Materials[J].PhysRev B, 2014, 89(24):245431-1-245431-10.

    Google Scholar

    [8] DAVYDOV S Yu. Упругие и диэлектрические характеристики графеноподобных соединений AN-B8-N[J]. Физика и техника полупроводников, 2013, 47(8):1065-1070.

    Google Scholar

    [9] DAVYDOV S Yu. Вклад π-связей в эффективные заряды, энергию когезии и силовые константы графеноподобных соединений[J].Phys.SolidState, 2016, 58(2):392-400.

    Google Scholar

    [10] DAVYDOV S Yu. О силовых константах графена[J]. Phys.SolidState, 2010, 52(9):1815-1818.

    Google Scholar

    [11] 郑瑞伦, 胡先权.大学物理面心立方晶体热力学非谐效应[J].大学物理, 1994, 13(5):15-18.

    Google Scholar

    [12] HARRISON W A. Theory of the Two-Center Bond[J]. Phys RevB, 1983, 27(6):3592-3604. doi: 10.1103/PhysRevB.27.3592

    CrossRef Google Scholar

    [13] DAVYDOV S Yu. Упругие модули третьего порядка однослойного графена[J]. Phys.SolidState, 2011, 53(3):617-619.

    Google Scholar

    [14] DAVYDOV S Yu.Оценки упругих характеристик графенов[J]. Phys Stat Sol, 2009, 51:2041-2042.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  /  Tables(2)

Article Metrics

Article views(1884) PDF downloads(133) Cited by(0)

Access History

Other Articles By Authors

On Thermal Expansion and Elastic Modulus and Effective Charge of ZnS Graphene

    Corresponding author: Xiao-xia REN ; 

Abstract: Considering the deformation and the anharmonic vibration of the atoms, we have studied the temperature-dependence of the thermal expansion coefficient and the elastic modulus of ZnS graphene, the relationship between the effective charge and the polarity and the deformation by the solid physical method. We have discussed the effects of the deformation and the atomic anharmonic vibration on them. The results show that the thermal expansion coefficient of ZnS graphene is negative, and the value is between1.1781.178×10-3K-1 and 22.323×10-3, which is increasing with temperature. The value of elastic modulus is between 0.241 405-453.253 5 GPa increasing with temperature. In the consideration of the simple harmonic approximation, the thermal expansion coefficient is zero and the elastic modulus are constant. When the anharmonic term is considered, the thermal expansion coefficient and the modulus of elasticity vary with the temperature. The higher the temperature is, the more obvious the anharmonic effect is. Among the deformation shear, the shear deformation and uniaxial deformation, the size deformation has the greatest influence on the positive effective charge, the uniaxial deformation has the greatest influence on the negative effective charge, and the shear deformation has the least influence on the positive and negative effective charge. The influence of size deformation on polarity can reach 70.4%, while the effect of shear deformation is only 46.5%.

  • 硫化锌(ZnS)是典型的直接带隙半导体,具有良好的光学性能和电学性能,在光电器件、LED材料等诸多领域应用广泛,目前已有一些文献对三维ZnS材料的性质,特别是光学性质进行了研究[1-3].文献[4]的研究发现:SiC,ZnS等除具有三维结构外,还具有与石墨烯类似的二维六角结构,人们将这类材料称为类石墨烯.文献[5-7]用密度泛函方法研究了SiC等二维类石墨烯的稳定性,证明了这些化合物可以存在.这类材料因其独特的性质和广泛的应用前景,已引起人们极大的兴趣,并对它们的性能进行了一些研究.文献[8]利用哈里森键联轨道法,研究了ANB8-N化合物的弹性和介电性质,文献[9]还研究了π键对类石墨烯的有效电荷、内聚能和力常数的贡献,但这些研究未对具体物质作计算分析,特别是对具有重要应用价值的光电材料ZnS类石墨烯的热力学性质研究很少,而且研究中认为原子是静止的,其结果不能反映其性质随温度的变化规律.文献[10-11]研究表明:ZnS类石墨烯这类二维结构,存在大小、剪切等多种形变,这些形变和原子的非简谐振动对ZnS类石墨烯的性质有重要的影响.探索它的热膨胀系数、弹性模量和有效电荷等的变化规律和特点,无论在应用还是理论上都是一个待解决的重要问题.为此,本文将在考虑到形变和原子作非简谐振动情况下,应用固体物理理论和方法,对这一问题进行研究.

1.   物理模型、简谐系数和非简谐系数
  • ZnS类石墨烯是由Zn原子和S原子构成的二维六角格子平面系统,设这两种原子各自总原子数为N,最近邻原子间距离为d(称键长),取任一原子为坐标系原点,平面为OXY平面,φ(d)轴垂直向上,坐标系选取见图 1.

    按文献[9],考虑到短程作用后,ZnS类石墨烯的原子相互作用能为

    其中,V1为金属化能,$V_{2}=\eta \hbar^{2} / m d^{2}$σ键的共价能,η=3.26;$V_{2}^{*}=\eta_{p p \pi} \hbar^{2} / m d^{2}$π键的共价能,ηppπ=0.63(文献[12]);V3V3*分别是σ键和π键的极化能,αpαp*分别是σ键和π键的极性参量,而αcαc*分别是σ键和π键的共价参量,其值为:

    式中的常数C为短程作用参量,文献[10]给出C=0.20 eV.

    为了克服文献[9]不能研究热力学性质随温度变化规律的不足,本文认为,在(1)式所示原子相互作用能的作用下,原子不是静止的,而是在平面内在平衡位置附近作非简谐振动.将φ(d)在平衡位置d0附近展开,偏离δ=d-d0很小时,有

    其中,ε0ε1ε2分别是简谐系数、第一和第二非简谐系数.由(1)式求得:

2.   ZnS的热膨胀系数和弹性模量随温度的变化规律
  • 当温度不太高时,键长的平均位移ζ与温度的关系为[11]

    由(7)式求得在温度不太低和不太高时的热膨胀系数$\alpha_{l}=\frac{1}{d_{0}} \frac{d \xi}{d T}$

    弹性模量B随温度的变化为

    其中,Ω为ZnS类石墨烯的原胞面积,它与最近邻原子间距离d0的关系为$\Omega=(\sqrt{3} / 2) d_{0}^{2}$.

3.   ZnSe的有效电荷
  • 有效电荷,是指化合物中的实际电荷.当正、负离子组成化合物时,有效电荷与它们单独存在时的电荷不同.对ZnS类石墨烯,正、负离子有效电荷(以e为单位)分别为[9]

    类石墨烯是二维材料,易发生形变,造成极性参量发生改变,进而引起有效电荷发生改变.它所发生的形变,包括两离子间距离变化的大小形变(图 2(a)、系统绕垂直平面的轴发生旋转的剪切形变(图 2(b)),还有单轴形变(图 3)等.

    形变使其极性参量发生改变.大小形变使极性参量由αp改变为αpαp*改变为αp′*.它们对d的相对变化量$\delta_{p}=d_{0}\left(\partial \alpha_{p} / \partial d\right)_{d_{0}}, \delta_{p}^{*}=d_{0}\left(\partial \alpha_{p}^{*} / \partial d_{0}\right)_{d_{0}}$称为键长形变极性变化率,剪切形变引起的对θ的变化τp=$\left(\partial^{2} \alpha_{p} / \partial \theta^{2}\right)_{\theta=0}, \tau_{p}^{*}=\left(\partial^{2} \alpha_{p}^{*} / \partial \theta^{2}\right)_{\theta=0}$称为剪切形变极性变化率.由αpV2的表示式可求得:

    这里的λ为表征剪切形变引起共价能V2变化程度的参量,按文献[13],取λ=0.66.

    类石墨烯的极性改变,导致键长等的变化,进而导致ZnS有效电荷发生改变.

    大小形变造成有效电荷Z+Z-的改变随键长的变化率$\zeta_{\pm}=\left(\partial Z_{\pm} / \partial d\right)_{d_{0}}$经计算为:

    剪切形变引起正负离子有效电荷改变量随转角θ的变化率$\eta_{\pm}=\left(\partial^{2} Z_{\pm} / \partial \theta^{2}\right)_{\theta=0}$经计算为:

    单轴形变因改变离子电荷分布而产生有效电荷,其中,沿x轴的单轴形变产生的有效电荷为:

    式中ζ为黎曼相对位移参量,由ζ=(1-λ)/(1+λ)求得.

    沿y轴轴向形变产生新的有效原子电荷为:

    由(13)-(16)式,可得几种形变造成的ZnS类石墨烯的正、负有效电荷(以e为单位)的改变量ΔZ+,ΔZ-为:

    由(10)和(17)式,就得到ZnS类石墨烯形变后的有效电荷Z±=Z±Z±.

4.   形变和非简谐振动对ZnS类石墨烯热膨胀和弹性模量以及有效电荷的影响
  • 文献[8]给出ZnS类石墨烯有关数据为:d0=2.19×10-10m,V1=2.80 eV,V2=7.75 eV,V2*=1.52 eV,V3*=2.94 eV,由(2)式求得αp=0.710,αp*=5.221,αc=0.704,αc*=0.141.代入(4)、(5)、(6)式,求得:ε0=3.97×102J/m2ε1=-2.53×1012J/m3ε2=3.20×1022J/m4.还可求得Ω=4.154×10-20m3.将ε0ε1ε2以及玻尔兹曼常数kB代入(8)式和(9)式,得到ZnS类石墨烯热膨胀系数和弹性模量随温度的变化见表 1.表中的(0),(1),(2)分别是简谐近似、计算到第一非谐项、同时计算到第一、二非谐项的结果.变化曲线见图 4.

    表 1图 4看出:①在所讨论的温度范围内,ZnS类石墨烯的热膨胀系数αl为负值,且随温度升高而数值增大,其数值在1.178×10-3-22.323×10-3K-1之间;②ZnS类石墨烯的弹性模量随温度升高而增大,其数值在0.241 405~453.253 5 GPa之间,其中,温度低于700 K时变化很小,而温度高于700 K后则迅速增大;③简谐近似下的热膨胀系数为零,弹性模量为常量.考虑非简谐项后,αlB均随温度升高而变化.温度愈高,非简谐效应愈显著;④第一非谐项和第二非谐项引起的αlB的差异极小.

    将文献[14]以及前面计算的αp等数据代入(11)、(12)式,求得:ZnS类石墨烯的大小形变和剪切形变引起的极性变化率δpδp*τp分别为:δp=0.704,δp*=0.039,τp=0.465.这表明:①大小形变引起键长形变极性变化率比剪切形变引起的极性变化率大,大小形变对其影响可达到70.4%,剪切形变对其影响仅为46.5%;②形变使ZnS类石墨烯的极性参量变大,而共价参量变小.

    将上述数据代入(13)和(14)式,得到ZnS类石墨烯的3种形变对ZnS的几个有效电荷的影响参量(ζ+ζ-η+η-),结果是:对大小形变,ζ+=2.820,ζ-=-2.820;对剪切形变,η+=1.395,η-=-1.395.其余形变的ζ+ζ-η+η-均为零.这表明:①单轴形变不会引起ZnS类石墨烯正负离子有效电荷的变化,而大小形变引起的变化比剪切形变引起的变化要大;②大小形变与剪切形变引起的正负离子有效电荷的变化相同.

    将上述数据代入(15)-(16)式,求得:ZnS类石墨烯的有效电荷形变前为:Z+=1.417,Z-=-5.676,而形变后为Z+=4.658,Z-=-16.621.其中大小形变、剪切形变、单轴形变对形变后有效电荷的贡献见表 2,而形变前后总有效电荷的变化见图 5.

    表 2图 5看出:①形变使ZnS类石墨烯的正有效电荷由Z+=1.417增大到Z+=4.658,负有效电荷由Z-=-5.676变为Z-=-16.621,形变对负电荷的影响大于正电荷;②3种形变中,大小形变和单轴形变对正、负有效电荷的影响最大,剪切形变的影响最小.

5.   结论
  • 1) 在所讨论的温度范围内,ZnS类石墨烯的热膨胀系数为负值,且随着温度的升高而数值增大,其数值在1.178×10-3-22.323×10-3K-1之间.简谐近似下的热膨胀系数为零;考虑非简谐项后,热膨胀系数随温度升高而变化.温度愈高,简谐与非简谐的值的差愈大.非简谐项中,第二非简谐项的影响极小;

    2) 弹性模量随温度升高而增大,数值在0.241 405~453.253 5 GPa之间.温度低于700 K时变化很小,而温度高于700 K后则迅速增大;简谐近似下为常数;考虑非简谐项后则随温度升高而增大.温度愈高,非简谐效应愈显著;温度较低时第二非谐项的影响才明显;

    3) 单轴形变不会引起ZnS类石墨烯有效电荷的变化,而大小形变引起的变化大于剪切形变.形变对负电荷的影响大于正电荷;大小、剪切、单轴形变这3种形变中,大小形变对正有效电荷和单轴形变对负有效电荷影响最大,剪切形变的影响最小.

    4) 大小形变对极性的影响可达到70.4%,剪切形变的影响仅为46.5%.

Figure (5)  Table (2) Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return