Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 12
Article Contents

Jiang-yan TAO, Xiao LI. Dual Lq Transference Principle[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(12): 31-34. doi: 10.13718/j.cnki.xsxb.2019.12.006
Citation: Jiang-yan TAO, Xiao LI. Dual Lq Transference Principle[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(12): 31-34. doi: 10.13718/j.cnki.xsxb.2019.12.006

Dual Lq Transference Principle

More Information
  • Corresponding author: Xiao LI
  • Received Date: 26/04/2019
    Available Online: 20/12/2019
  • MSC: O186.5

  • In this paper, the dual Lq Brunn-Minowski theory is generalized based on the existing results and mainly discusses the dual Lq Brunn-Minowski type inequality and obtains few results. In this paper, a unified method for dealing with Lq Brunn-Minowski type inequality is given by means of literature review, which is called dual Lq transference principle. By using this principle, a simplified proof of the famous dual Lq Brunn-Minkowski type inequality about the dual mixed volume is given.
  • 加载中
  • [1] GARDNER R J.Geometric Tomography[M].Cambridge:Cambridge University Press, 2006.

    Google Scholar

    [2] GRUBER PM.Convex and Discrete Geometry[M].Berlin:Springer, 2007.

    Google Scholar

    [3] SCHNEIDERR. Minkowski Addition[M]//Convex Bodies: the Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014.

    Google Scholar

    [4] LUTWAKE.Dual Mixed Volumes[J].Pacific JMath, 1975, 58(2):531-538. doi: 10.2140/pjm.1975.58.531

    CrossRef Google Scholar

    [5] LUTWAK E.Intersection Bodies and Dual Mixed Volumes[J]. Advin Math, 1988, 71(2):232-261. doi: 10.1016/0001-8708(88)90077-1

    CrossRef Google Scholar

    [6] 杨琴, 罗淼.平面上几个对偶Brunn-Minkowski不等式[J].西南大学学报(自然科学版), 2015, 37(2):74-78.

    Google Scholar

    [7] FIREY WJ.p-Means of Convex Bodies[J].MathScand, 1962, 10:17-24.

    Google Scholar

    [8] LUTWAKE.The Brunn-Minkowski-Firey Theory I:Mixed Volumes and the Minkowski Problem[J].J Differential Geom, 1993, 38(1):131-150.

    Google Scholar

    [9] LUTWAKE.The Brunn-Minkowski-Firey Theory II[J].Advance in Mathematics, 1996, 118(2):244-294.

    Google Scholar

    [10] ZOU D, XIONG G. A Unified Treatment for Lp Brunn-Minkowski Type Inequalities[J].Comm Anal Geom, 2018, 26(2):435-460. doi: 10.4310/CAG.2018.v26.n2.a6

    CrossRef Google Scholar

    [11] 杨林, 罗淼, 王贺军.Lp对偶Brunn-Minkowski不等式[J].西南大学学报(自然科学版), 2017, 39(10):79-83.

    Google Scholar

    [12] 杨林, 罗淼, 吴笑雪, 等. Lp对偶Minkowski不等式的稳定性[J].西南师范大学学报(自然科学版), 2018, 43(4):37-40.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1122) PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Dual Lq Transference Principle

    Corresponding author: Xiao LI

Abstract: In this paper, the dual Lq Brunn-Minowski theory is generalized based on the existing results and mainly discusses the dual Lq Brunn-Minowski type inequality and obtains few results. In this paper, a unified method for dealing with Lq Brunn-Minowski type inequality is given by means of literature review, which is called dual Lq transference principle. By using this principle, a simplified proof of the famous dual Lq Brunn-Minkowski type inequality about the dual mixed volume is given.

  • Brunn-Minkowski不等式是经典的等周不等式的推广,也是Brunn-Minkowski理论中重要的不等式之一[1-3].对偶Brunn-Minkowski理论是经典Brunn-Minkowski理论的自然发展.对偶Brunn-Minkowski不等式是对偶Brunn-Minkowski理论中最重要的不等式之一[4-6].

    KL是$\mathbb { R } ^ { n }$中关于原点的星体,则有

    等号成立当且仅当KL互为膨胀,其中V(·)是n维的体积,$K\tilde + L$表示KL的径向和.

    20世纪60年代初,文献[7]介绍了凸体的Lq加法及数乘,并建立了Lq Brunn-Minkowski不等式.文献[8-9]推动了Lq Brunn-Minkowski理论的进一步发展.关于Lq Brunn-Minkowski理论以及对偶Lq Brunn-Minkowski理论的最新讨论参见文献[10-12].对偶Lq Brunn-Minkowski不等式为:

    KL是$\mathbb { R } ^ { n }$中关于原点的星体,0 < q < n,则有

    等号成立当且仅当KL互为膨胀,其中$K{\tilde + _q}L$表示KLq阶径向和.

    本文主要研究对偶Brunn-Minkowski型不等式,用对偶Lq变换法则证明了与对偶混合体积有关的不等式.

    有关凸几何的基本知识和常用符号可参见文献[3].

    定义1   给定函数:$\tilde F:S_o^n \to (0, + \infty), K, L \in S_o^n$,若对α∈(0,1),有

    则称$\tilde F$是q-凸的.当q=1时,我们称$\tilde F$为凸的.

    引理1   设KLSon,0 < q < 1,0 < α < 1,则

    等号成立当且仅当K=L.

      由$(1 - \alpha){ \cdot _q}K{\tilde + _q}\alpha { \cdot _q}L$的定义和0 < q < 1,t∈(0,∞)时f(t)=tq的严格凹性,对所有的uSn-1,有

    所以

    等号成立当且仅当

    即当且仅当K=L.

    定理1   设:$\tilde F:S_o^n \to (0, + \infty)$是正齐次的、增的凸函数,0 < q < 1.设KLSon,则对所有的α∈(0,1),有

    当:$\tilde F:S_o^n \to (0, + \infty)$为严格增时,(3) 式中的等号成立当且仅当KL互为膨胀.

      不等式(3)等价于

    由$\tilde F$的正齐次性,(4)式等价于

    又因

    其中

    结合(5)式,不等式(3)等价于

    对(6)式运用引理1,得

    因此,由$\tilde F$的单调性、凸性和正齐次性,有

    假设(3)式中等号成立,则(7)式中不等号应为等号,即

    因$\tilde F$是严格增函数,则

    又由引理1知

    所以KL互为膨胀.

    另一方面,假设KL互为膨胀,即K=βLβ>0,则有

    由$\tilde F$的正齐次性得到

    即(3)式中等号成立.

    推论1   设:$\tilde F:S_o^n \to (0, + \infty)$是正齐次的、增的凸函数,0 < q < 1.设KLS on,则

    当:$\tilde F:S_o^n \to (0, + \infty)$为严格增时,(8)式中等号成立当且仅当KL互为膨胀.

      设α ∈(0,1),由定理1和$\tilde F$的正齐次性,得到

    当$\tilde F$为严格增时,等号成立当且仅当${(1 - \alpha)^{ - \frac{1}{q}}}K$与${\alpha ^{ - \frac{1}{q}}}L$互为膨胀,所以KL互为膨胀.

    下面给出著名的对偶Brunn-Minkowski型不等式[3]的一个简化证明:

    定理2  设KLKj+1,…,KnSon,0 < q < 1且j∈{2,…,n},则

    等号成立当且仅当KL互为膨胀.

      设KLKj+1,…,KnSon

    则$\tilde F$是正齐次的、严格增的正函数.由文献[3]知$\tilde F$是凸函数.所以由推论1知

    等号成立当且仅当KL互为膨胀.

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return