Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 8
Article Contents

Lin YANG, Miao LUO, Bang-cai HE, et al. On Mixed Volume of Orlicz-Aleksandrov Body[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(8): 25-28. doi: 10.13718/j.cnki.xsxb.2020.08.005
Citation: Lin YANG, Miao LUO, Bang-cai HE, et al. On Mixed Volume of Orlicz-Aleksandrov Body[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(8): 25-28. doi: 10.13718/j.cnki.xsxb.2020.08.005

On Mixed Volume of Orlicz-Aleksandrov Body

More Information
  • Corresponding author: Miao LUO ; 
  • Received Date: 22/07/2019
    Available Online: 20/08/2020
  • MSC: O186.5

  • In this paper, the mixed volume of Orlicz-Aleksandrov body over Brunn-Minkowski theorem has been studied, and the Orlicz-Minkowski inequality and Orlicz-Brunn-Minkowski inequality are obtained.
  • 加载中
  • [1] LUTWAK E, YANG D, ZHANG G. Orlicz Centroid Bodies [J]. J Differential Geome, 2010, 84(2): 365-387.

    Google Scholar

    [2] LUTWAK E, YANG D, ZHAMG G. Orlicz Projection Bodies [J]. Adv in Math, 2010, 223(1): 220-242.

    Google Scholar

    [3] HABERL C, LUTWAK E, YANG D, et al. The Even Orlicz Minkowski Problem [J].Adv in Math, 2010, 224(6): 2485-2510.

    Google Scholar

    [4] GARDNER R, HUG D, WEIL W. The Orlicz-Brunn-Minkowski Theory: A General Framework, Additions, and Inequalities [J]. J Differential Geome, 2014, 97(3): 427-476.

    Google Scholar

    [5] GARDNER R, HUG D, WEIL W, et al. The Dual Orlicz-Brunn-Minkowski Theory [J]. J Math Anal Appl, 2015, 430(2): 810-829.

    Google Scholar

    [6] ZHU B C, ZHOU J Z, XU W X. Dual Orlicz-Brunn-Minkowski Theory [J].Adv in Math, 2014, 264: 700-725.

    Google Scholar

    [7] XIONG G, ZOU D. Orlicz Mixed Quermassintegrals [J]. Science China Math, 2014, 57(12): 2549-2562.

    Google Scholar

    [8] ZHAO C J. Orlicz-Aleksandrov-Fenchel Inequality for Orlicz Multiple Mixed Volumes [J]. J Func Spaces, 2018, 2018: 1-16.

    Google Scholar

    [9] 邢素丹. Orlicz-Aleksandrov体的不等式[J].应用数学与计算数学学报, 2017, 31(1): 107-113.

    Google Scholar

    [10] LUTWAK E. The Bruun-Minkowski-Firey Theory Ⅰ: Mixed Volume and the Minkowski Problem [J]. J Differential Geome, 1993, 38(1) : 131-150.

    Google Scholar

    [11] SCHNEIDER R. Convex Bodies: the Brunn-Minkowski Theory [M]. Cambridge: Cambridge University Press, 2014.

    Google Scholar

    [12] HU Y, JIANG J H. Inequalities of Aleksandrov Body [J]. J Ineq Appl, 2011, 2011(1): 39.

    Google Scholar

    [13] 张增乐, 罗淼, 陈方维.平面上的新凸体与逆Bonnesen-型不等式[J].西南师范大学学报(自然科学版), 2015, 40(4): 27-30.

    Google Scholar

    [14] 杨林, 罗淼, 侯林波.逆的对偶Brunn-Minkowski不等式[J].西南大学学报(自然科学版), 2016, 38(4): 85-89.

    Google Scholar

    [15] 杨林, 罗淼, 王贺军. Lp对偶Brunn-Minkowski不等式[J].西南师范大学学报(自然科学版), 2017, 39(10): 79-83.

    Google Scholar

    [16] HARDY G, LITTLEWOOD J, PÓLYA G. Inequalities [M]. Cambridge: Cambridge University Press, 1952.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1036) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

On Mixed Volume of Orlicz-Aleksandrov Body

    Corresponding author: Miao LUO ; 

Abstract: In this paper, the mixed volume of Orlicz-Aleksandrov body over Brunn-Minkowski theorem has been studied, and the Orlicz-Minkowski inequality and Orlicz-Brunn-Minkowski inequality are obtained.

  • 文献[1-3]在Lp Brunn-Minkowski理论的基础上探究了Orlicz-Brunn-Minkowski理论,建立了Orlicz-Brunn-Minkowski不等式与Orlicz-Minkowski不等式,并在其基础上衍生了一系列结果[4-9],关于凸几何方面的其他信息可参见文献[10-15].

    欧氏空间$\mathbb{R}$n中的凸体之集记为$\mathscr{K}$n$\mathscr{K}$on={K$\mathscr{K}$no∈int K}.用C+表示定义在单位球面Sn-1上连续的正值函数族,$\mathscr{A}$表示[0,+∞)上非负的严格递增凸函数族.

    K$\mathscr{K}$n的支撑函数为hK(u)=max{x·uxK},uSn-1.n维体积为V(K)=$\frac{1}{n} \int_{S^{n-1}} h_{K}(u) \mathrm{d} S(K, u)$,dS(Ku)表示Ku方向上的面积微元.

    φ$\mathscr{A}$KL$\mathscr{K}$onα≥0,β≥0(αβ不同时为0).KL的Orlicz组合[4, 7]α·φK+φβ·φL$\mathscr{K}$onhα·φK+φβ·φL(u)=inf$\left\{\lambda>0: \alpha \varphi\left(\frac{h_{K}(u)}{\lambda}\right)+\beta \varphi\left(\frac{h_{L}(u)}{\lambda}\right) \leqslant \varphi(1)\right\}$确定.

    由Orlicz组合的定义知

    文献[8]研究了φ$\mathscr{A}$K1,…,KnL$\mathscr{K}$on的Orlicz多元混合体积Vφ(K1,…,KnL),其定义为

    φ(x)=x时,Vφ(K1,…,KnL)=V(K1,…,Kn)=$\frac{1}{n} \int_{S^{n-1}}$hKn(u)dSi(K1,…,Kn-1u);当K1=$ \cdots $=Kn-i-1=KKn-i=…=Kn-1=Bφ(x)=x时,Vφ(K1,…,KnL)=Wi(KL)=$\frac{1}{n} \int_{S^{n-1}}$hL(u)dSi(Ku).有如下Minkowski不等式[10]

    文献[8]建立了如下所示的Orlicz-Aleksandrov-Fenchel不等式和Orlicz-Brunn-Minkowski不等式:

    Orlicz-Aleksandrov-Fenchel不等式  若φ$\mathscr{A}$K1,…,KnL$\mathscr{K}$on,1≤rn,则

    Orlicz-Brunn-Minkowski不等式  若φ$\mathscr{A}$K1,…,KnL$\mathscr{K}$on,且φ(1)=1,则对∀ε>o有

    f(u),g(u)∈C+(Sn-1),φ$\mathscr{A}$fg的Orlicz组合α·φf+φβ·φg

    设函数f(u)∈C+(Sn-1),与f(u)相关的Aleksandrov体[11]A(f)=max{KKonhK(u)≤f(u)}.

    文献[9]研究了关于函数f(u),g(u)∈C+(Sn-1),φ$\mathscr{A}$的Orlicz-Aleksandrov体A(α·φf+φβ·φg),其支持函数hA(α·φf(u)+φβ·φg(u))=max{Q$\mathscr{K}$onhQ(u)≤α·φf(u)+φβ·φg(u)}.

    由Orlicz-Aleksandrov体的定义及公式(1)知

    φ=tp(p≥1)时的Orlicz-Aleksandrov体为p-Aleksandrov体[10, 12],即

    本文在文献[8-9]的启发下,探索了关于Orlicz-Aleksandrov体的Orlicz多元混合体积Vφ(K1,…,Kn-1fg),其定义为

    同时建立了如下不等式:

    定理1  若f(u),g(u)∈C+(Sn-1),φ$\mathscr{A}$Ki$\mathscr{K}$on,1≤rn,则

    定理2  若f(u),g(u)∈C+(Sn-1),φ$\mathscr{A}$Ki$\mathscr{K}$on,1≤rn-1,则

    引理1[10]  若f(u),g(u)∈C+(Sn-1),则A(f+φεg)→A(f).

    引理2[9]  若f(u)∈C+(Sn-1),A(f)为与f(u)相关的Aleksandrov体,则

    引理3  若fgC+(Sn-1),φ∈$\mathscr{A}$,则

      令hA(f+φ ε·φg)(u)=hε(u),hA(f)(u)=hf(u).由引理1、引理2、公式(3)及凸函数的性质知

    其中x=φ-1$\left(\varphi(1)-\varepsilon \varphi\left(\frac{g(u)}{h_{\varepsilon}(u)}\right)\right)$.

    引理4  若f(u),g(u)∈C+(Sn-1),φ$\mathscr{A}$Ki$\mathscr{K}$on(1≤in),则

      由引理2、引理3、公式(4),有

    K1=$\cdots$=Kn-i-1=A(f),Kn-i=$\cdots$=Kn-1=B,则有

    引理5[11]  若Ki$\mathscr{K}$n(1≤in),则V(K1,…,Kn)≥$\prod\limits_{r=1}^{m} V\left(K_{r}[m], K_{m+1}, \cdots, K_{n}\right)^{\frac{1}{m}}$.特别地,当m=n时,有V(K1,…,Kn) ≥$\prod\limits_{r=1}^{n} V\left(K_{i}\right)^{\frac{1}{n}}$.

    定理1的证明  根据引理2、引理4、Jensen不等式[16],可得

    结合引理2与引理5可得:

    在定理1中令m=n,可得

    推论1  若f(u),g(u)∈C+(Sn-1),K1,…,Kn-1$\mathscr{K}$on,则

    K1=$ \cdots $=Kn-i-1=A(f),Kn-i=$ \cdots $=Kn-1=B,由不等式(2)与不等式(5)可得:

    推论2  若f(u),g(u)∈C+(Sn-1),φ$\mathscr{A}$i=0,2,…,n-1,则

    在推论2中取i=0,可得:

    推论3  若f(u),g(u)∈C+(Sn-1),则Vφ(fg)≥V(f$\varphi\left(\left(\frac{V(g)}{V(f)}\right)^{\frac{1}{n}}\right)$

    定理2的证明  令Δ=Vφ(K1,…,Kn-1f+φgf)+Vφ(K1,…,Kn-1f+φgg),由公式(3)与引理4可得

    由不等式(5)可得

    将(6)式与(7)式代入Δ中即得证定理2.

    若取K1=$ \cdots $=Kn-i-1=A(f),Kn-i=$ \cdots $=Kn-1=B,代入定理2可得:

    推论4  若f(u),g(u)∈C+(Sn-1),φ$\mathscr{A}$i=0,2,…,n-1,则

    在推论4中令i=0,得:

    推论5[9]  若f(u),g(u)∈C+(Sn-1),则φ$\left(\left(\frac{V(f)}{V\left(f+_{\varphi} g\right)}\right)^{\frac{1}{n}}\right)+\varphi\left(\left(\frac{V(g)}{V\left(f+_{\varphi} g\right)}\right)^{\frac{1}{n}}\right) \leqslant \varphi(1)$.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return