Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 10
Article Contents

Dong GUO, En AO, Huo TANG, et al. On Coefficient Estimates for Subclasses of Bi-Close-to-Convex Functions[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(10): 16-20. doi: 10.13718/j.cnki.xsxb.2020.10.004
Citation: Dong GUO, En AO, Huo TANG, et al. On Coefficient Estimates for Subclasses of Bi-Close-to-Convex Functions[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(10): 16-20. doi: 10.13718/j.cnki.xsxb.2020.10.004

On Coefficient Estimates for Subclasses of Bi-Close-to-Convex Functions

More Information
  • Received Date: 17/02/2020
    Available Online: 20/10/2020
  • MSC: O174.51

  • Subclasses of bi-close-to-convex function defined in the open unit disk has been introduced. Estimates on the coefficients |a2|, |a3| and Fekete-Szegö inequality for functions in this new subclass been obtained.
  • 加载中
  • [1] KAPLAN W. Close-to-Convex Schlicht Functions[J]. Michigan Math J, 1952, 1(2):169-185. doi: 10.1307/mmj/1028988895

    CrossRef Google Scholar

    [2] FEKETE M, SZEGÖ G. Eine Bermerkung Vber Ungerade Schlichte Functionen [J]. Journal of the London Mathematical Society, 1933, 8(2): 85-89.

    Google Scholar

    [3] 高纯一.近于凸函数族的Fekete-Szegö问题[J].数学年刊(A辑), 1994, 15(6): 650-656.

    Google Scholar

    [4] LEWIN M. On a Coefficient Problem for Bi-Univalent Functions [J]. Proc Am Math Soc, 1967, 18(1): 63-68. doi: 10.1090/S0002-9939-1967-0206255-1

    CrossRef Google Scholar

    [5] NAIK U H, PATIL A B. On Initial Coefficient Inequalities for Certain New Subclasses of Bi-Univalent Functions [J]. Journal of the Egyptian Mathematical Society, 2017, 25(3): 291-293. doi: 10.1016/j.joems.2017.04.001

    CrossRef Google Scholar

    [6] 熊良鹏.双单叶星形和凸函数的系数边界[J].西南师范大学学报(自然科学版), 2015, 40(6): 5-9.

    Google Scholar

    [7] LASHIN A Y. On Certain Subclasses of Analytic and Bi-Univalent Functions [J]. Journal of the Egyptian Mathematical Society, 2016, 24(2):220-225. doi: 10.1016/j.joems.2015.04.004

    CrossRef Google Scholar

    [8] GUO D, LI Z T. On the Coefficients of Several Classes of Bi-Univalent Functions Defined by Convolution [J]. Communications In Mathematical Research, 2018, 34(1): 65-76.

    Google Scholar

    [9] PENG Z G, HAN Q Q. On the Coefficients of Several Classes of Bi-Univalent Functions [J]. Acta Mathematica Scientia, 2014, 34(1): 228-240. doi: 10.1016/S0252-9602(13)60140-X

    CrossRef Google Scholar

    [10] LI Z T, GUO D. Coefficient Estimates for a Subclass of Bi-Univalent Strongly Quasi-Starlike Functions [J]. Communications In Mathematical Research, 2018, 34(4): 303-308.

    Google Scholar

    [11] KUMAR S S, KUMAR V, RAVICHANDRAN V. Estimates for the Initial Coefficients of Bi-Univalent Functions [J]. Tamsui Oxford Journal of Information and Mathematical Sciences, 2013, 29(4): 487-504.

    Google Scholar

    [12] ZAPRAWA P. On the Fekete-Szegö Problem for Classes of Bi-Univalent Functions [J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2014, 21(1): 169-178. doi: 10.36045/bbms/1394544302

    CrossRef Google Scholar

    [13] 夏道行, 张开明.关于从属函数的几个不等式[J].数学学报, 1958, 8(3): 408-412.

    Google Scholar

    [14] PROKHOROV D V, SZYNAL J. Inverse Coefficients for (α, β)-Convex Functions [J]. Annales Universitatis Mariae Curie-Sklodowska Lublin-Polonia, 1981, 15: 125-143.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(801) PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

On Coefficient Estimates for Subclasses of Bi-Close-to-Convex Functions

Abstract: Subclasses of bi-close-to-convex function defined in the open unit disk has been introduced. Estimates on the coefficients |a2|, |a3| and Fekete-Szegö inequality for functions in this new subclass been obtained.

  • H表示在单位圆盘U={z:|z| < 1}内具有下述形式的解析函数类:

    S表示H中的单叶函数族.用S*K分别表示星像函数类和近于凸函数类.易知f(z)∈S*当且仅当$ \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0(z \in U)$.设f(z)∈S,若存在g(z)∈S*,使得$ \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>0(z \in U)$,则称f(z)为近于凸函数,其全体记为K,近于凸函数类是由文献[1]提出的.

    文献[2]证明了如下结果:

    定理1 [2]  设fS,0≤μ<1,则有

    且对每个μ,存在f使得等号都成立.

    文献[3]引入函数类K(β),定义如下:对于f(z)∈S,0<β≤1,若存在g(z)∈S*使得

    成立,则称f(z)为β型近于凸函数,其全体记为K(β).当β=1时,K(1)=K.

    著名的$ \text { Koebe- } \frac{1}{4}$定理表明:每个具有形式(1)的单叶函数f都存在逆函数f-1,且

    其中

    函数f(z)称为双单叶函数当且仅当ff-1U内都是单叶函数.现记Σ表示单位圆盘U内所有具有形式(1)的双单叶函数.文献[4]首先引入了双单叶函数族,证明了f(z)∈Σ,则有|a2|≤1.51.随后,许多作者研究了双单叶函数族的子类的|a2|,|a3|的上界问题[5-12].

    如果

    U内解析且满足

    其中$G(w)=g^{-1}(w)=\omega-b_{2} \omega^{2}+\left(2 b_{2}^{2}-b_{3}\right) \omega^{3}-\left(5 b_{2}^{3}-5 b_{2} b_{3}+b_{4}\right) \omega^{4}+\cdots $,则称g(z)为双单叶星像解析函数,其全体记为SΣ*.

    类似于函数类K(β)的定义,作者定义了一类双单叶近于凸解析函数类KΣ(β).假设

    如果存在双单叶星像解析函数g,满足

    其中0<β≤1,h=f-1G=g-1,则称f(z)为β-型双单叶近于凸函数.其全体记为KΣ(β).

    本文研究了函数类KΣ(β)的前两项系数a2a3的估计及其Fekete-szegö不等式.

    引理1 [11]   设g(z)由(3)式给出,且满足g(z)∈SΣ*,则有

    引理2 [12]  设g(z)由(3)式给出,且满足g(z)∈SΣ*,则有

    引理3 [3]   f(z)∈K(β)当且仅当存在g(z)∈S*使得

    其中$\prec $表示函数的从属关系.由函数从属的定义,上式也可写成

    其中ω(z)在U内解析,且ω(0)=0,|ω(z)|<1.

    引理4 [13]  设$ \omega(z)=c_{1} z+c_{2} z^{2}+\cdots$U内解析,且|ω(z)|<1,则有

    引理5 [14]   设$ \omega(z)=c_{1} z+c_{2} z^{2}+\cdots$U内解析,且|ω(z)|<1,则对任意的实数t,有

    定理2   假设f(z)∈KΣ(β)(0<β≤1),则有

      因为f(z)∈KΣ(β),则由引理3可知,存在U内的两个函数ω1ω2,满足

    其中函数gGω1ω2的展式分别为

    由(1),(2),(4),(5),(6),(7),(8)和(9)式,得

    由(10),(12)式得

    由(15)式及引理1、引理4,得

    由(16)式及引理1、引理4,得

    由(17)式及引理1、引理4,得

    用(11)式加上(13)式,得

    由(21)式及引理4、引理5,得

    由(18),(19),(20)和(22)式,得

    由(11)式和引理1、引理2、引理5,得

    定理3   假设f(z)∈KΣ(β)(0<β≤1),对任意的实数λ,则有

      由(11),(21)式得

    利用引理1、引理4和引理5,得

    由(23)式和引理2可得定理3.

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return