Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 10
Article Contents

Bao-xiang TANG, Han REN. On Calculation Formula for Perfect Matching Number of Two Types of Graphs[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(10): 13-15. doi: 10.13718/j.cnki.xsxb.2020.10.003
Citation: Bao-xiang TANG, Han REN. On Calculation Formula for Perfect Matching Number of Two Types of Graphs[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(10): 13-15. doi: 10.13718/j.cnki.xsxb.2020.10.003

On Calculation Formula for Perfect Matching Number of Two Types of Graphs

More Information
  • Received Date: 03/02/2020
    Available Online: 20/10/2020
  • MSC: O157.5

  • The perfect matchings of graphs Nmn and 3-nK3, 3 have been classified according to the edge associated with a vertex, and the recurrence relationship of the number of perfect matchings of each type been obtained, and then the sum and nested recursion methods been used to give the counting formulas for the different perfect matchings in graphs Nmn and 3-nK3, 3 are 2n and 6n.
  • 加载中
  • [1] LOVÁSZ L, PLUMMER M. Matching Theory[M]. New York :North-Holland Press, 1986.

    Google Scholar

    [2] LI S L, YAN W G. The Matching Energy of Graphs with Given Parameters[J]. Discrete Applied Mathematics, 2014, 162: 415-420. doi: 10.1016/j.dam.2013.09.014

    CrossRef Google Scholar

    [3] DONG F M, YAN W G, ZHANG F J. On the Number of Perfect Matchings of Line Graphs [J]. Discrete Applied Mathematics, 2013, 161(6): 794-801. doi: 10.1016/j.dam.2012.10.032

    CrossRef Google Scholar

    [4] 唐保祥, 任韩.图的1-因子数目的递推求法[J].浙江大学学报(理学版), 2019, 46(6):670-675.

    Google Scholar

    [5] 唐保祥, 任韩.按匹配顶点分类的完美匹配数递推求法[J].吉林大学学报(理学版), 2019, 57(2): 286-290.

    Google Scholar

    [6] 唐保祥, 任韩.两类特殊图 1-因子数分类递推求法[J].大连理工大学学报, 2019, 59(1):106-110.

    Google Scholar

    [7] 唐保祥, 任韩.按饱和顶点分类的完美匹配数的递推求法[J].华南师范大学学报(自然科学版), 2019, 51(5): 110-114.

    Google Scholar

    [8] 唐保祥, 任韩. 2类图完美匹配计数公式的嵌套递推求法[J].西南师范大学学报(自然科学版), 2019, 44(8): 23-27.

    Google Scholar

    [9] 陈兰.完全K部图的Hosoya指标和Merrifield-Simmons指标极图[J].西南师范大学学报(自然科学版), 2019, 44(6): 14-17.

    Google Scholar

    [10] 王文杰, 黄丽娜, 李沐春. T-型六角系统的点可区别边染色[J].西南大学学报(自然科学版), 2018, 40(10): 77-82.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(832) PDF downloads(133) Cited by(0)

Access History

Other Articles By Authors

On Calculation Formula for Perfect Matching Number of Two Types of Graphs

Abstract: The perfect matchings of graphs Nmn and 3-nK3, 3 have been classified according to the edge associated with a vertex, and the recurrence relationship of the number of perfect matchings of each type been obtained, and then the sum and nested recursion methods been used to give the counting formulas for the different perfect matchings in graphs Nmn and 3-nK3, 3 are 2n and 6n.

  • 图的完美对集的计数问题的研究有重要的理论价值和现实意义[1-3].此问题已经被证实是NP-困难问题.分类嵌套递推的方法是求解许多类图完美对集数的一种非常有效的方法[4-10].本文构造了2类新的Nmn和3-nK3,3,用分类嵌套递推的方法求出了图Nmn和3-nK3,3不同完美对集的计数公式.

    定义1   如果图G有1-正则生成子图P,那么就称这个生成子图P为图G的完美对集.

    定义2   设图G是有完美对集的图,如果图G的两个完美对集P1P2中有一条边不同,那么就称P1P2G的两个不同的完美对集.

    定义3   设长度为2m的圈Cmi的顶点集合为V(Cmi)={ui1ui2,…,uimvi1vi2,…,vim}(i=1,2,…,n),把圈Cmi的顶点vi1vi2,…,vim与圈Cmi+1的顶点ui+1,1ui+1,2,…,ui+1,m(i=1,2,…,n-1)连接成圈vi1ui+1,2vi3ui+1,4vi5vim-1ui+1,mvimui+1,m-1vim-2ui+1,3vi2ui+1,1vi1(i=1,2,…,n-1),这样产生的图记为Nmn,见图 1.

    定义4   设完全偶图K3,3i的顶点集合为V(K3,3i)={ui1ui2ui3vi1vi2vi3}(i=1,2,…,n),把圈K3,3i的顶点vi1vi2vi3分别与圈K3,3i+1的顶点ui+1,1ui+1,2ui+1,3 (i=1,2,…,n-1)各连接一条边,这样产生的图记为3-nK3,3,见图 2.

    定理1   设图Nmn的完美对集数为δ(mn),则δ(n)=2n.

      因为图Nmn的每个圈Cmi:vi1ui2vi3ui4vi5vim-1uimvimuim-1vim-2ui3vi2ui1vi1恰有2个完美对集(i=1,2,…,n),每个圈取定一个完美对集,就形成图Nmn的一个完美对集.因此,由乘法原理可知,图Nmn至少有2n个不同的完美对集.下面证明图Nmn只有2n个不同的完美对集.

    P是图Nmn的完美对集的集合,对于集合P中的任何一个完美匹配PiPi一定要饱和顶点u11.与顶点u11关联的边只有2条,所以集合P可划分为2类:P1P2.设u11v11P1u11v12P2,则$ P_{1} \cap P_{2}=\emptyset, P=P_{1} \cup P_{2}$,故δ(mn)=|P|=|P1|+|P2|.

    因为u11v11P1,所以当m是偶数时,边u11v11u12v13v12u13u14v15v14u15,…,u1,m-2v1,m-1v1,m-2u1,m-1u1mv1m都属于P1; 当m是奇数时,边u11v11u12v13v12u13u14v15v14u15,…,u1,m-1v1mv1,m-1u1m都属于P1.由δ(mn)的定义可知,|P1|=δ(mn-1).

    因为u11v12P2,所以当m是偶数时,边v11u12u13v14v13u14u15v16v15u16,…,u1,m-2v1,mv1,m-1u1,m都属于P2; 当m是奇数时,边v11u12u13v14v13u14u15v16v15u16,…,u1,m-2v1,m-1v1,m-2u1,m-1u1mv1m都属于P2.由δ(mn)的定义可知,|P2|=δ(mn-1).

    因此,δ(mn)=|P|=2δ(mn-1)=…=2n-1δ(m,1)=2n.

    定理2   设图 3-nK3,3的完美对集数为γ(n),则γ(n)=6n.

      图 3-nK3,3存在完美对集是明显的.设图 3-nK3,3的完美对集的集合为S,对于集合S中的任何一个完美匹配SiSi一定要饱和顶点u11.与顶点u11关联的边有3条,所以集合S可划分为3类:S1S2S3.设u11v11S1u11v12S2u11v13S3,则SiSj=(1≤i < j≤3),S=S1S2S3.故γ(n)=|S|=|S1|+|S2|+|S3|.

    S1划分为两类. S1中含边u11v11u12v12u13v13的完美对集集合记为S11; S1中含边u11v11u12v13v12u13的完美对集集合记为S12.由γ(n)的定义可知

    因此,有

    S2划分为两类. S2中含边u11v12v11u12u13v13的完美对集集合记为S21; S2中含边u11v12v11u13u12v13的完美对集集合记为S22.由γ(n)的定义可知

    因此,有

    S3划分为两类. S3中含边u11v13v11u12u13v12的完美对集集合记为S31; S3中含边u11v13v11u13u12v12的完美对集集合记为S32.由γ(n)的定义可知

    因此,有

    由(1)式和(2),(3)式,得

    图 3知,γ(1)=6,故图 3nK3,3的完美对集数为γ(n)=6n

Figure (3)  Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return