Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 12
Article Contents

LI Zhao-qian. Existence of Positive Solutions for a Class of Second Order Neumann Problem with Sign-Changing Green′s Function[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(12): 43-47. doi: 10.13718/j.cnki.xsxb.2020.12.008
Citation: LI Zhao-qian. Existence of Positive Solutions for a Class of Second Order Neumann Problem with Sign-Changing Green′s Function[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(12): 43-47. doi: 10.13718/j.cnki.xsxb.2020.12.008

Existence of Positive Solutions for a Class of Second Order Neumann Problem with Sign-Changing Green′s Function

More Information
  • Received Date: 01/11/2019
    Available Online: 20/12/2020
  • MSC: O177.92

  • In this paper, a class of second-order nonlinear Neumann problems has been studied with sign-changing Green′s function $\left\{ \begin{array}{l} {u^{\prime \prime }} + {m^2}u = \lambda g(t)f(u)\;\;\;\;\;\;t \in [0,1]\\ {u^\prime }(0) = {u^\prime }(1) = 0 \end{array} \right.$ Where \lt i \gt λ \lt /i \gt is a positive parameter, $m \in \left({\frac{\pi }{2}, \frac{\pi }{2} + {\rm{ \mathsf{ ε} }}} \right)$ with \lt i \gt ε \lt /i \gt \gt 0 small, $g:[0, 1] \to { \mathbb{R} _ + }$ is a continuous function, $f:\left[0,\;\infty \right)\to \mathbb{R}$ is a continuous function and \lt i \gt f \lt /i \gt (0) \gt 0 by means of the Schauder fixed point theorem, We obtain the existence of positive solutions.
  • 加载中
  • [1] JIANG D Q, LIU H Z. Existence of Positive Solutions to Second Order Neumann Boundary Value Problems[J]. Journal of Mathematical Research and Exposition, 2000, 20(3): 360-364.

    Google Scholar

    [2] SUN J P, LI W T, CHENG S S. Three Positive Solutions for Second-Order Neumann Boundary Value Problems[J]. Applied Mathematics Letters, 2004, 17(9): 1079-1084.

    Google Scholar

    [3] CHEN X P, LI R G. Existence of Multiple Positive Solutions to Singular Second Order Neumann Boundary Value Problems[J]. Ann Differential Equations, 2010, 26(2): 136-143.

    Google Scholar

    [4] 陈瑞鹏, 马如云, 闫东明.二阶常微分方程Neumann边值问题正解的全局分歧[J].应用数学学报, 2012, 35(3): 515-528.

    Google Scholar

    [5] ZHANG Y W, LI H X. Positive Solutions of a Second-Order Neumann Boundary Value Problem with a Parameter[J]. Bulletin of the Australian Mathematical Society, 2012, 86(2): 244-253.

    Google Scholar

    [6] 马如云, 陈瑞鹏, 李杰梅.非线性Neumann问题正解的存在性[J].数学学报, 2013, 56(3): 289-300.

    Google Scholar

    [7] WANG F, ZHANG F. Existence of Positive Solutions of Neumann Boundary Value Problem Via a Cone Compression-Expansion Fixed Point Theorem of Functional Type[J]. Journal of Applied Mathematics Computing, 2011, 35(2): 341-349.

    Google Scholar

    [8] BOSCAGGIN A, GARRIONE M. Positive Solutions to Indefinite Neumann Problems When the Weight Has Positive Average[J]. Discrete Contin Dyn Syst, 2016, 36(10): 5231-5244.

    Google Scholar

    [9] CIANCIARUSO F, INFANTE G, PIETRAMALA P. Multiple Positive Radial Solutions for Neumann Elliptic Systems With Gradient Dependence[J]. Math Methods Appl Sci, 2018, 41(16): 6358-6367.

    Google Scholar

    [10] LEI C Y. Existence and Multiplicity of Positive Solutions for Neumann Problems Involving Singularity and Critical Growth[J]. J Math Anal Appl, 2018, 459(2): 959-979.

    Google Scholar

    [11] 王守财, 赵仕海, 熊宗洪, 等.一类带Neumann边界条件的Kirchhoff型方程解的多重性[J].西南师范大学学报(自然科学版), 2019, 44(4): 11-15.

    Google Scholar

    [12] 郭大钧, 孙经先, 刘兆理.非线性常微分方程泛函方法[M]. 2版.济南:山东科学技术出版社, 2005: 90.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(696) PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors

Existence of Positive Solutions for a Class of Second Order Neumann Problem with Sign-Changing Green′s Function

Abstract: In this paper, a class of second-order nonlinear Neumann problems has been studied with sign-changing Green′s function $\left\{ \begin{array}{l} {u^{\prime \prime }} + {m^2}u = \lambda g(t)f(u)\;\;\;\;\;\;t \in [0,1]\\ {u^\prime }(0) = {u^\prime }(1) = 0 \end{array} \right.$ Where \lt i \gt λ \lt /i \gt is a positive parameter, $m \in \left({\frac{\pi }{2}, \frac{\pi }{2} + {\rm{ \mathsf{ ε} }}} \right)$ with \lt i \gt ε \lt /i \gt \gt 0 small, $g:[0, 1] \to { \mathbb{R} _ + }$ is a continuous function, $f:\left[0,\;\infty \right)\to \mathbb{R}$ is a continuous function and \lt i \gt f \lt /i \gt (0) \gt 0 by means of the Schauder fixed point theorem, We obtain the existence of positive solutions.

  • 非线性二阶常微分方程Neumann问题具有广泛的物理背景,对此类问题的研究已经取得了许多结果[1-11].但许多学者在研究非线性二阶Neumann问题正解的存在性时,都是在格林函数大于0的情形下研究的[1-7].特别地,文献[1]在$m \in \left( {0,\;\frac{{\rm{\pi }}}{2}} \right)$的条件下研究了二阶常微分方程Neumann问题

    基于锥

    运用锥拉伸与压缩不动点定理,得到问题(1)至少存在1个正解,其中非线性项f满足超线性或次线性条件,AB分别表示问题(1)对应的齐次问题的格林函数的最小值和最大值,且AB均大于0.

    进一步,文献[2]对问题(1)中的非线性项f提出了新的约束条件,运用Leggett-Williams不动点定理,在$m \in \left({0, \frac{{\rm{ \mathsf{ π} }}}{2}} \right)$的条件下,得到问题(1)至少存在3个非负解,其中fC([0, 1]×[0,∞),[0,∞))且存在常数ad,使得0 < d < a,且

    这里$m \in \left({0, \frac{{\rm{ \mathsf{ π} }}}{2}} \right)$保证了问题(1)的格林函数大于0,但是在格林函数变号的情况下此类问题的研究较少.

    注意到:当问题(1)中$m = \frac{{\rm{ \mathsf{ π} }}}{2} + \frac{1}{n} \in \left({\frac{{\rm{ \mathsf{ π} }}}{2}, \frac{{\rm{ \mathsf{ π} }}}{2} + {\rm{ \mathsf{ ε} }}} \right)$,且${G_m}(0, 0) < 0, {G_m}\left({\frac{1}{2}, \frac{1}{2}} \right) > 0$,即问题(1)的格林函数变号.现在的问题是:当格林函数变号时,二阶Neumann问题是否存在正解?基于此,本文将运用Schauder不动点定理考察二阶Neumann问题

    正解的存在性,其中λ是正参数,$m \in \left({\frac{{\rm{ \mathsf{ π} }}}{2}, \frac{{\rm{ \mathsf{ π} }}}{2} + {\rm{ \mathsf{ ε} }}} \right), {\rm{ \mathsf{ ε} }} > 0$充分小.

    Gm(ts)是问题(2)对应的齐次问题

    的格林函数,则

    Gm(ts)=Gm+(ts)-Gm(ts),其中

    本文总假定:

    (H1) f:[0,∞)→$\mathbb{R} $为连续函数且f(0)>0;

    (H2) g:[0, 1]→$\mathbb{R} $+连续且在(0,1)的任一子区间内不恒为0;

    (H3) 存在常数k>0,使得$\int_0^1 {G_m^ + } (t, s)g(s){\rm{d}}s \ge (1 + k)\int_0^1 {G_m^ - } (t, s)g(s){\rm{d}}s, t \in [0, 1]$.

    引理1  问题(2)对应的齐次问题的格林函数Gm(ts)在(ts)∈[0, 1]×[0, 1]上有以下性质:

    (ⅰ) Gm(ts)在(ts)∈[0, 1]×[0, 1]上变号,如图 1所示.在图 1中$m \in \left({\frac{{\rm{ \mathsf{ π} }}}{2}, \frac{{\rm{ \mathsf{ π} }}}{2} + \varepsilon } \right)$,其中ε>0充分小,“+”表示Gm(ts)>0,“-”表示Gm(ts) < 0.

    当(ts)属于线段L1L2L3L4时,Gm(ts)=0;

    当(ts)属于D1D2D5D6区域时,Gm(ts) < 0;

    当(ts)属于D3D4区域时,Gm(ts)>0.

    (ⅱ)∫01Gm(ts)ds>0.

       (i)分两种情况进行讨论:

    情形1   0≤st≤1.

    因为$m \in \left({\frac{{\rm{ \mathsf{ π} }}}{2}, \frac{{\rm{ \mathsf{ π} }}}{2} + {\rm{ \mathsf{ ε} }}} \right)$,其中ε>0充分小,所以msin m>0.因此Gm(ts)的符号与cos m(1-t)·cos ms的符号一致.

    (a) Gm(ts)=0.

    当cos m(1-t)=0或cos ms=0时,Gm(ts)=0.此时st满足$0 \le s \le t = \frac{{2m - {\rm{ \mathsf{ π} }}}}{{2m}}{\rm{ }}$或$\frac{{\rm{ \mathsf{ π} }}}{{2m}} = s \le t \le 1$.即(ts)属于图 1中的线段L1L3.

    当cos m(1-t)=0,cos ms=0时,Gm(ts)=0.但是st不满足st,故舍去.

    (b) Gm(ts) < 0.

    当cos m(1-t)>0,cos ms < 0,或cos m(1-t) < 0,cos ms>0时,Gm(ts) < 0.此时st满足$\frac{{2m - {\rm{ \mathsf{ π} }}}}{{2m}} < t \le 1, \frac{{\rm{ \mathsf{ π} }}}{{2m}} < s \le 1$,或$0 \le t = \frac{{2m - {\rm{ \mathsf{ π} }}}}{{2m}}{\rm{, }}\; {\rm{ 0}} \le s < \frac{{\rm{ \mathsf{ π} }}}{{2m}}$.即(ts)属于图 1中的D1区域或D5区域.

    (c) Gm(ts)>0.

    当cos m(1-t)>0且cos ms>0时,Gm(ts)>0.此时st满足$\frac{{2m - {\rm{ \mathsf{ π} }}}}{{2m}} < t \le 1$且$0 \leqslant s < \frac{\pi}{2 m}$.即(ts)属于图 1中的D3区域.

    当cos m(1-t) < 0且cos ms < 0时,Gm(ts)>0.但是st不满足st,故舍去.

    情形2   0≤ts≤1.

    同理可得:

    (d) Gm(ts)=0.

    当(ts)属于图 1中的线段L2L4时,Gm(ts)=0.

    (e) Gm(ts) < 0.

    当(ts)属于图 1中的D2区域或D6区域时,Gm(ts) < 0.

    (f) Gm(ts)>0.

    当(ts)属于图 1中的D4区域时,Gm(ts)>0.

    (ii)

    引理2[12]   (Schauder 不动点定理)设D是Banach空间X中的有界闭凸集,ADD全连续,则AD中必有不动点,即存在x*D,使得Ax*=x*.

    定理1  假设条件(H2)成立,若$\tilde f$:$\mathbb{R} $→$\mathbb{R} $,且存在常数M>0使得|$\tilde f$(s)|≤M,则∀λ∈$\mathbb{R} $,问题

    至少存在1个解uλC[0, 1].

      令E=C[0, 1],则E在范数$\left\| u \right\| = \mathop {{\rm{max}}}\limits_{t \in \left[ {0,{\rm{ }}1} \right]} |u(t)|$下构成Banach空间. B是闭凸集,定义为

    其中R是待定的正常数.

    定义算子FλBE

    问题(3)有解等价于算子方程Fλu=u有不动点.由于对任意的uBt∈[0, 1],都有

    R=|λ|Mmax|Gm| ‖g‖,则Fλ(B)⊂B.因为Gm(ts)在[0, 1]×[0, 1]上连续且g在[0, 1]上连续,因此易证FλBB是全连续算子.

    根据引理2可知Fλ至少存在1个不动点uλ∈[0, 1].故问题(3)至少存在1个解uλC[0, 1].

    定理2  假设条件(H1)-(H3)成立,则存在λ0>0,使得当0 < λ < λ0时,问题(2)至少存在1个正解.

      固定一个足够大的M,定义函数为h:$\mathbb{R} $→$\mathbb{R} $为

    由定理1可知,对任意的λ∈$\mathbb{R} $,问题

    至少存在1个解uλC[0, 1].

    固定$\gamma \in \left({0, \frac{k}{{2 + k}}} \right), k > 0$,由h的连续性可知,存在δ∈(0,M)使得

    因为

    从而存在λ0>0,使得

    因此

    因为$\gamma \in \left({0, \frac{k}{{2 + k}}} \right)$,从而(4)式右端非负,因此问题(2)存在解uλC[0, 1],t∈[0, 1].

    例1  考虑二阶Neumann边值问题

    正解的存在性,其中λ是正参数,$m \in \left({\frac{{\rm{ \mathsf{ π} }}}{2}, \frac{{\rm{ \mathsf{ π} }}}{2} + {\rm{ \mathsf{ ε} }}} \right), {\rm{ \mathsf{ ε} }} > 0$充分小.

    这里f(u)=u+1,g(t)=1,因此条件(H1),(H2)成立.由引理1知$\int_0^1 {{G_m}} (t, s){\rm{d}}s > 0$,故存在常数k>0使得条件(H3)成立.

    因此由定理2可知,存在λ0=m2>0,使得当0 < λ < λ0=m2时,问题(5)有唯一的正解$u = \frac{\lambda }{{{m^2} - \lambda }}$.

Figure (1)  Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return